当前位置

: 时空阅读网实用范文数学之美读后感(模板18篇)

数学之美读后感(模板18篇)

匿名 2025-03-05 13:43:04 7 下载本文

当看完一部影视作品后,相信大家的视野一定开拓了不少吧,是时候静下心来好好写写读后感了。读后感对于我们来说是非常有帮助的,那么我们该如何写好一篇读后感呢?以下是小编为大家准备的读后感精彩范文,希望对大家有帮助!

数学之美读后感篇一

第8章里的“索引”,作者讲到谷歌面试产品经理的一道题目:如何向你的奶奶解释搜索引擎。关于这个问题,好的回答据说是用图书馆的索引卡片做类比。

我奶奶是个文盲,一生为农,日出而作,日落而息。她很少看电视,更别说图书馆。所以用图书馆的例子,对我们来说,很生动;对她来说,很生涩。

我们村的田地是按照地形、土质和流水等来划分的,计有一等地、二等地和三等地。一般情况下,一等地用来种水稻,二等地用来种菜,三等地用来种水果。

所以当我奶奶想要给我摘桔子的时候,她肯定不会从一等地或者二等地一块地一块地找过来,而是直接跑到三等地(一般就是山上)。

像这样的索引,是基于脑子里的“数据库”,因为田地不会很多,多了也来不及种,所以跟布尔代数没什么关系。但是这样解释,我奶奶就会大概明白了。我奶奶生前一次电脑也没用过,跟她解释这些,唯一的意义是,她会觉得我没有敷衍她,这会使她欣慰――如果有机会解释的话。

杨小凯曾经说,如果张五常多加注重使用数学模型,那诺奖也许就拿下了。张五常对此不以为然,反以为傲,自诩当今世上只有科斯、阿尔钦和他才敢只用文字,不借助数学模型就在经济学界占有一席之地。

当然,张五常也不是彻底否定数学的作用,他认为能够用文字解释的经济学原理,不必使用数学对其复杂化。

数学在信息学和经济学里都有广泛应用,但是在信息科学方面,对数学作用大小的争论就没有经济学那么大了。

我们常说搜索引擎的竞价广告,就可能经历到第三方公司,通常他们宣传自己是谷歌或者别的搜索引擎公司的代理商,然后通过不正当手段为客户提高网页的排名。谷歌在消除网络作弊方面做了很多努力,通过修改排序算法来为搜索者提供更加准确实效的信息。

“作弊的本质是在网页排名信号中加入噪音,因此反作弊的关键是去噪音。沿着这个思路可以从根本上提高搜索算法抗作弊的能力。”我们公司就是吃了这个亏,交了不少钱给第三方公司,结果算法一变,关键词的排名从前三下降到前三页没影。

社交搜索正在雄起,但是如果想要在传统的搜索引擎中占据有利排名,我想,第三方公司的技术水平是很关键的。

大学专业课里,数电总是要比模电简单不少。

自然界里大部分的信号都属于模拟信号。所谓模拟信号,是指时间和数值上都是连续变化的信号。在实际电路中,模/数转换是一个很重要的过程,将预处理的模拟信号经过模/数变换为数字信号,然后进行数字信号处理。而数字化处理有很多优点,比如功能强大、抗干扰能力强、易集成化等。

简而言之,如果没有数学,就没有数字信号处理的概念,也就无法进行信号的传输,而数字信号传输在大规模的集成电路里是必不可少的,这是通信成功的基本要求。

之前看到有人说如果高中看这本书,也许数学就是另一番天地,会有所突破。我不觉得,如果高中看这种书,我想,大多数人还是会对数学更加望而却步。本书更适合通信电子这些专业的`学生,在学习专业课的时候辅助阅读,对理解通信原理、数电模电等都有更形象生动的想法。

数学之美读后感篇二

第一段:数学之美第四集的主题是离散性。通过介绍在数学领域中,离散性所起到的重要作用,这一集向我们展示了数学在各个领域中的广泛应用。尤其是在密码学、网络安全、图论等领域中,离散性的概念和方法为问题的解决提供了重要的思路和工具。这一集的内容令人震撼,让我深刻认识到数学在现代社会中的重要性和价值。

第二段:在这一集中,我最印象深刻的是离散数学在密码学中的应用。通过讲解RSA公钥加密算法,节目给我们展示了离散数学如何在保障通信的安全性上发挥着关键的作用。RSA算法的核心是在大数分解问题上,这是一个离散数学中非常经典的问题。通过在素数的离散性质上进行研究,可以保证通信的机密性和可靠性。这个例子让我深刻理解到离散数学在现代信息安全领域的重要性。

第三段:此外,这一集还介绍了离散数学在图论中的应用。图论是现代数学中一个非常重要的分支,它研究的是离散的数学结构。通过图论可以解决一些实际问题,比如地图路径规划、电力网络优化等。图论中的一些基本概念和算法,比如最短路径算法和最小生成树算法,对于解决这些实际问题非常有帮助。离散数学为图论的发展提供了坚实的基础,也拓宽了数学在实际应用中的边界。

第四段:通过这一集,我还了解到了离散数学在计算机科学中的重要性。计算机科学是离散数学的一个重要应用领域,离散数学中的很多概念和方法可以直接应用于计算机科学中。比如在计算机程序设计中,离散数学中的逻辑和证明方法可以帮助我们设计出高效、可靠的程序。离散数学在计算机科学中的应用范围非常广泛,它为计算机科学的发展做出了巨大贡献。

第五段:最后,数学之美第四集告诉我们离散数学的美妙之处在于其应用广泛而深远。离散数学在密码学、图论、计算机科学等领域中的应用,为问题的解决提供了重要的思路和工具。它不仅在学术研究中发挥着关键作用,也在实际应用中发挥着举足轻重的作用。通过学习离散数学,我们可以更好地理解和利用这一抽象而具有广泛适用性的数学分支,为解决实际问题提供更好的解决方案。

这一集的内容给我留下了深刻的印象,让我对离散数学有了更深入的认识。离散数学的美妙之处在于它的应用广泛性和实用性,它为解决实际问题提供了有效的方法和思路。通过了解离散数学的应用,我不仅对数学的价值和重要性有了更深刻的认识,也对在实际生活中如何应用数学有了更清晰的理解。我相信,在未来的学习和工作中,我会继续深入学习和探索离散数学的应用,为解决实际问题提供更好的解决方案。

数学之美读后感篇三

人们发现真理的形式上从来都是简单的,而不是复杂和含混的。

——牛顿。

自小就学数学的我,并不觉得它是美好的。于我而言,数学就像紧箍咒一样,不能提,一提。就头疼。

而看了吴军博士所写的《数学之美》后,我对数学的感觉,从以前的被动获取和勉强学习,变成了强烈热爱和主动积极的学习。这原因就在于我发现了它的价值,它的一枝独秀,不可或缺的地位,数学的博大精深和对其相关的各类事业的发展的价值已使我深深陶醉其中。这本书中有很多复杂且长的公式,但这并不妨碍大众的阅读,因为它并非在于让你了解更多it领域的知识,而是用了大量篇幅介绍各个领域的典故,让我们感受数学思维。这就像李欣教授所说:“成为一个领域的大师有其偶然性,但更有其必然性。其必然性就是大师们的思维方法。”

英国哲学家弗朗西斯·培根在《论美德》这篇文章中讲:“美德就如同华贵的宝石,在朴素的衬托下最显华丽。”数学的美妙,也恰恰在于一个好的思维,好的方法。

在《数学之美》十四章,我被它的标题吸引到了。“余弦定理和新闻的分类”,这俩看似八竿子打不着。却有着紧密的联系。可以说,新闻的分类很大程度上依赖的是余弦定理。我们都知道,计算机处理一个问题是让他去算,而不是像人类一样理解了它,再去解决。而科学家们遇到这个问题,却用了另一种思维,他们把文字的新闻变成一组可计算的数字,然后再设计一个算法来算出任意两篇新闻的相似性。稍详细一些就是:对于一篇新闻中的所有实词。计算出它们的tf-idf值,再把这些值按照其在对应词汇表的位置依次排列就得到一个向量,这即新闻的特征向量。这时,就可以通过计算两个向量夹角来判断对应的新闻主题的接近程度,这也就要用到余弦定理了。我在必修五数学书上学到余弦定理时,很难想象它可以用来对新闻进行分类。在这里我又一次看到了数学工具的用途。

在书中,我也了解到了数学的发展实际上是不断的抽象和概括的过程。这些抽象了的方法看似离生活越来越远,但他们最终能找到应用的地方,布尔代数便是如此。

布尔代数的简单不能再简单了。运算的元素只有两个0和1,基本的运算只有“与”、“或”和“非”。几乎就是我们现在所学的“判断命题真假”。在布尔代数提出后的80多年里,他确实没有什么像样的应用。直到1938年香农在他的硕士论文中指出,布尔代数来实现开关电路。才使得布尔代数成为数字电路的基础。正是依靠这一点,人类用一个个开关电路最终“搭出”电子计算机。

这些,都能体现作者“简单即是美”的思想。他在书中也写道:“数学的精彩之处就在于简单的模型可以干大事。”这些,也都是我从未感受到过的。并且,在这本书中,作者也用了不少篇幅来介绍通信领域的世界级专家,让我对真正的世界级学者有更多的了解和理解,比如贾里尼克,googleak-47的设计者——阿米特·辛格博士,自然语言处理的教父米奇·马库斯等等。

爱因斯坦说过:“从希腊哲学到现代物理学的整个科学史中。不断有人力图地表面上极为复杂的自然现象归结为几个简单的基本概念和关系,这就是整个自然哲学的基本原理。”这本书把数学在it领域的美丽予以了精彩表达,我也知道,把一件复杂的事用简单的语言表达出来,并非易事,这应该也是各界人士都对这本书予以好评的原因吧。

当然,我也明白,欣赏美不是终极目的,更值得我们追求的是创造美境界。

还有,希望未来的自己,无论生活好与坏,都能少一点浮躁,多一点踏实和对自然科学本质的好奇求知。

数学之美读后感篇四

数学是一门神奇的学科,它存在于我们周围的世界之中,影响着我们的生活。而在我眼中,数学是一门美丽的艺术,许多优美的定理、公式和方程式背后隐藏着不为人知的美学。今天我想分享一下我对于数学之美的感悟和体会。

第一段:数学的结构之美。

数学被人们形容为一门“自我完备”的学科,它的结构、规则和定理都是自洽的。这种完备性本身就是一种美感,让人感到它的纯净和优雅。在学习数学的过程中,我渐渐地能够体会到不同数学概念之间的相互联系以及它们构成的深层次结构。这种结构之美,让我们对于数学的理解更加深刻。

第二段:数学的思维之美。

数学的思维方式是独特的,需要极强的逻辑思维和抽象思维能力。在解决问题的过程中,我们需要尝试不同的解题思路,应用不同的数学方法,挖掘问题的本质。这种思考方式本身就是一种美感。每次成功地解决一个数学难题,都会给我们带来一种满足感和成就感,从而激发我们进一步地思考和探索。

第三段:数学的应用之美。

数学与现实世界的联系密不可分,它被广泛应用于自然科学和社会科学等领域。通过数学方法,我们可以对于现实世界进行建模、分析和预测。这种应用之美让我们能够深刻地认识到数学在日常生活中的重要性。例如,在理解医学影像学时,数学成为桥梁,将人体内的复杂结构分解成数学上易于处理的模型,进而为临床医生提供准确诊断、治疗方案和手术计划。这种跨学科应用也让我们意识到数学背后的美感和普适性。

第四段:数学的历史之美。

数学的历史悠久,从对星象的观测到爱因斯坦的相对论,不断有数学家创新性地提出新的方法和定理。这一过程充满了创新和历史感,让人想起了一道道数学难题背后的完美故事。在了解数学历史的过程中,我不仅对于数学的发展有了更加清晰地认识,还更加深刻地感受到数学神秘和奥妙。

第五段:数学的教育之美。

最后,我想强调一下数学的教育之美。数学是一门需要理性思维的学科,但也需要灵活的思维方式和想象力。在学校和家庭的教育下,我们可以培养和锻炼自己的数学思维能力,理解数学的美感。数学教育可以让我们更加深入地思考和理解问题,也能够提高我们的解决问题的效率。因此,我认为数学教育背后也隐藏着美感,这种美感不仅仅来源于数学本身,还与数学背后教育与儒家思想的紧密结合有关。

总之,数学是一门充满美感的学科,从它的结构、思维、应用、历史和教育的角度,我们都可以感受到它的美妙和神秘。如果我们能够认真学习和思考数学,相信我们一定可以感受到数学之美。

数学之美读后感篇五

在看吴军的《数学之美》之前,我并没有看过他写的《浪潮之巅》、《文明之光》等书,但是他主理的得到专栏《硅谷来信》已经听了很久,对吴军其人颇为了解——本硕毕业于清华大学,然后在约翰霍普金斯大学攻读博士,02年、10年先后在谷歌和腾讯任职,是著名的自然语言处理和搜索专家,现在主业是硅谷风险投资。他的专栏宣传标语是“像时代领航者一样思考”,吴军也确实具有“时代领航者”那样的视野和见识,除了专业领域之外,对于日常生活和学习、职业发展也有不俗的见解。

《数学之美》最初是吴军做谷歌研究员时,在谷歌黑板报上撰写的一系列文章。虽然谷歌黑板报的本意是让吴军从一个科学家的角度介绍一下谷歌的技术,但是他却更希望“让做工程的年轻人看到在信息技术行业做事情的正确方法”——因为吴军刚到谷歌时,发现谷歌早期的一些算法根本没有系统的模型和理论基础,而是用“凑”的方法解决问题,工程水平低下。国内这种情况就更加泛滥了。

后来,吴军又将这一系列博客几乎重写了一遍,写成了《数学之美》,希望它能向非it行业的从业人员普及一些it领域的数学知识,能成为茶余饭后消遣的科普读物。“世界上最好的学者总是有办法深入浅出地把大道理讲给外行听,而不是故弄玄虚地把简单的问题复杂化”,因此吴军尽力以伽莫夫(《从一到无穷大》作者)、霍金为榜样,力图将数学之美展示给所有普通读者。

由于我学习过概率论、数理统计、数据结构,整本书看下来,除了某些章节后的“延伸阅读”和马尔可夫链等内容外,其他都是可以看懂的。其实看不懂的部分主要是在用数学推理证明文中的论点,即使不看也不会影响阅读体验。

吴军在扉页讲道:“数学之美,首先在于其内容或许复杂而深奥,但形式常常很简单。同时,数学之美还在于数学原理的通用性和普遍性——数学上的一点突破,可以带动很多领域和行业的进步。”

我高中时曾因为数学的应用不明确而对其抱有偏见,直到大学接触到了数学建模。同样,这本书中讲到了许多数学在信息技术工程领域的应用,搭建了数学与应用之间的桥梁。

书中最令人印象深刻的例子就是通信。人与人之间的交流,也算是广义上的通信,因此通信与我们的生活息息相关。而数学在通信中的应用非常普遍,因为从电报、电话、电视到互联网,这些现代通信都遵从着信息论的规律,而整个信息论的基础就是数学。不仅如此,整个人类的自然语言和文字的起源背后,都受到数学规律的支配——因为数字和文字、自然语言一样,都是信息的载体;语言和数学产生的目的都是为了记录和传播信息。

一个典型的通信系统是这样的:发送者(人或者机器)发送信息时,需要采用一种能在媒体中(比如空气、电线)传播的信号,比如语音或者电话线的调制信号,这个过程是广义的编码。然后通过媒体传播到接收方,这个过程是信道传输。在接收方,接收者(人或者机器)根据事先约定好的方法,将这些信号还原成发送者的信息,这个过程是广义上的解码。

我们平时说话时,大脑就是一个信息源,声带、空气就是如电线、光缆般的信道,听众的耳朵就是接收器,而声音就是传送的信号。根据声学信号推测说话者的意思,就是语音识别。

语言实质上是一套编码、解码的规则。从字(字母)到词的构词法是词的编码规则,这套规则是完备的(有限且封闭的集合);从词到句的语法是语言的编码规则,这套规则是不完备的(无限和开放的集合)——任何语言都有语法覆盖不到的地方。

正是由于语法是不完备的规则,所以在自然语言处理的研究当中,基于规则的方法走向了一条死路。随着计算机性能和可用数据量的增加,基于统计的方法已经被广泛运用到自然语言处理中。书的第2章到第7章,围绕自然语言处理的统计学模型,讲述得深入浅出,而且对科学界的许多大师级人物和他们的贡献都做了介绍。

另一个绝妙的应用案例,是第14章《余弦定理和新闻的分类》。我们在高中都学过用余弦定理判断两个向量之间的夹角大小,然而不知道这样做有什么实际意义。如果当时我们的老师能举出文本分类作为例子,一定能让同学们兴奋不已。

如果由人来做新闻分类,人一定会先把文章读懂。但是计算机没有智能,根本读不懂新闻,它只拥有强大的计算能力。这就要求我们把文字组成的新闻变成一组可以计算的数字,然后设计一个算法,算出任意两篇新闻的相似性。

新闻传递信息,而词是信息的载体,“同一类新闻用词都是相似的,不同类的新闻用词各不相同”。当剔除掉“的、地、得”和“之乎者也”那样的助词和虚词之后,对新闻中剩下的实词,计算出每个词的出现频率(实际上更为复杂,因为只是一篇读书笔记,我就简化成“出现频率”了),再按照词在词汇表中出现的顺序,将这些频率值依次排列,就得到了这篇新闻的特征向量。

如果词汇表中的某个词在新闻中没有出现,对应的频率值为0。如果词汇表总共有64000个词,就会得到一个64000维的特征向量,向量中每一个维度的大小代表每个词对这篇新闻主题的贡献。新闻就这样,从文字变成了数字。

一篇10000字的文本,它的特征向量各个维度的数值普遍比一篇500字的文本要大,因此单纯比较各个维度的大小没有太大意义。但是,向量的方向却有很大的意义。如果两个向量的方向基本一致,说明它们的新闻用词比例基本一致。

因此,可以通过余弦定理计算两个特征向量之间的夹角,判断对应的新闻主题的接近程度。在真实的文本分类聚合过程中,需要自底向上不断合并,合并的过程中类别越来越少,而每个类越来越大。

另外值得一提的是,这项研究的动机很有意思。当时某个国际会议需要把提交上来的几百篇论文交给各个专家评审,把每个研究方向的论文交给这个方向最有权威的专家。作为会议程序委员会主席的雅让斯基教授为了偷懒,就想了这个将论文自动分类的方法,由他的学生弗洛里安很快实现了。

考虑到多次迭代的计算量,后文又介绍了矩阵奇异值分解的方法,将计算量缩小到1/6。

此外,书中还介绍了搜索引擎算法、拼音输入法等应用背后的数学模型。第19章《谈谈数学模型的重要性》中用托勒密的地心说模型(大圆套小圆)举例,讲:“正确的数学模型在科学和工程中至关重要,而发现正确模型的途径往往是曲折的。正确的模型在形式上通常是简单的。”

其实大多情况下,看书只是用来怡情、消遣的手段,和打牌、玩游戏本质上是一样的。读书的过程中经常会灵光乍现,这就是读书的乐趣。

数学之美读后感篇六

重复的体力劳动已经被机器取代,重复的脑力劳动也将被ai取代。

目前的算法更多的是从统计学、概率论角度来执行,其算法依靠人为设定执行,今后ai的`介入,算法会趋于自我迭代、自我演化。

就整体而言机器的搜索、筛选、分析、逻辑推理等,都是基于当前情况最大概率决策。即通过算法计算下一步所有可能情况的概率分布,然后得出实现目标哪种决策成功概率最高,即为下一步的方案。

在这种环境下人最好的方式便是与机器合作,将资源分配到这些大概率事件上,当然也会有一部分人怀有赌徒心态,将资源,甚至全部资源分配到小概率事件上,幻想出现奇迹,而这件事就叫“创新”。

但“创新”才是真正的未来,因为从宇宙角度来看,人类诞生的几率不到万亿分之一,而这是多么伟大的奇迹,又是多么伟大的创新!

数学之美读后感篇七

数学是一门抽象而具有指导力的科学,也是许多人在学业上困扰的科目。然而,数学的美妙之处不仅仅在于它的解题方法和技巧,更在于它所代表的思维方式和思维秩序。在学习数学的过程中,我不断地领悟到了这门学科的美妙和智慧,以下是我所感悟到的数学之美的顾沛心得体会。

第一段:数学的可视化思维让人惊叹。

在数学学习中,可视化思维的重要性不言而喻。当我们将一个抽象的式子、一个几何图形或者一个函数图像利用一些方法可视化时,将更容易形象地理解它的含义和特点。通过这种可视化的方式,不仅能够直观地掌握数学知识,而且还能够培养我们的想象力。

第二段:数学的逻辑思维让人叹服。

除了可视化思维,数学还讲究逻辑思维。数学是一门严密的科学,一个假设的成立要经过严密的逻辑证明,才能成为定理被大家所接受。因此,学习数学不仅能够培养我们的逻辑思维,而且还能够提高我们的思维素质。

第三段:数学的抽象思维让人叹为观止。

与可视化思维和逻辑思维不同,在数学中抽象思维也是不可忽视的。数学中的数、小数、分数、代数式、函数等等,都是抽象的符号与概念,只有通过抽象理解,才能够真正掌握它们的内涵和本质。因此,要想深刻理解数学,在抽象思维方面的尝试和努力也同样重要。

第四段:数学的实用思维让人叹为观止。

数学并不是一门只关注理论研究的学科,它的实用性同样不容小觑。在日常生活中,我们经常会用到一些简单的数学知识,例如衡量物品的重量、大小等等。而在现代科技的推动下,数学的应用领域已经扩展到了生物、计算机、工程、金融、物理、化学等等领域。所以,无论我们的兴趣在哪个领域,都可以找到数学的身影。

在数学的学习中,我们不仅仅是在学习知识,更是在培养一种思维方式和思维秩序。通过数学的学习,我们可以通过可视化、逻辑、抽象和实用这四种思维方式,来更深入地解析问题。正如数学大师欧拉所说:“数学是最高的艺术和最强的智力锻炼”,尤其现代社会更是需要更多有深度思维的人才,因此感悟数学之美,深化思维就显得尤为重要。

数学之美读后感篇八

我是在读了吴军博士的《浪潮之巅》之后,发现推荐了《数学之美》这本书。我到豆瓣读书上看了看评价,就果断在当当上下单买了一本研读。本来我以为这是一本充满各种数学专业术语的书,读后让我非常震撼的是吴军博士居然能用非常通俗的语言将自然语言处理等高深理论解释的相当简单。在李开复博士之后,吴军博士又成为了目前备受瞩目的具有深厚技术背景的作家。对于我来说,读这本书有扫盲的功效,让我知道了很多以前不知道的东西。我的想法是在研究生阶段,不只局限于导师的研究方向,通过更加广泛的涉猎知识,去寻找一个自己喜欢的研究领域。如果找到了这样一个领域,那么我就读博士。如果没有的话,那么我想还是工作算了。

语言类、技术类的课程,这些课程的确对提升学生的就业有很大帮助。但是我想说的是,一个忽视数学基础、学科交叉的学校,他无法成为一所国内的一流大学。作为一个母校培养的学生,我深知改革的阻力与困难,但是我希望母校的计算机学院能越办越好。我们现在已经培养出很多高薪优秀的技术人才,我希望将来也能培养出更多的研究型人才。

在整本书中让我最为印象深刻的是解释google搜索的原理,居然就是简单的布尔代数运算。这个的确让我大跌眼镜,我一直认为搜索时一个非常复杂而庞大的问题,其数学原理也是相当高深的,但是吴军博士的解释让我大开眼界。与此同时也知道了google为什么牛,牛在哪了。搜索的原理虽然非常简单,但是搜索是一个需要对海量数据进行操作的工作。google在海量数据的处理方面的确是相当先进的,mapreduce、bigtable等等一些技术的发明与应用使得google在搜索上无出其右。目前分布式存储、分布式计算、数据仓库与存储等研究领域近些年来的大热也说明google在引领研究方向上的超凡本领。

在大二的时候,有一个在我们学生中声望很高的概率老师,他在课程即将结束的时候跟我们说我们将的是前几章,这些事概率论与数理统计的基础。对于你们计算机的学生来时,后面的章节才是最有用的,以后一定要好好的研究,弄上一两个在你的毕业设计上就会让你毕业设计提升一个档次,有可能验收你毕业设计的老师也不懂。我当时对他的话没有特别在意,我只关心期末考试要考哪些题目,因为我那个学期的概率课基本上都在睡觉,只有他讲笑话的时候不睡。我看《数学之美》后发现马尔科夫链、贝叶斯网络之后,对以前的概率老师充满无限的敬意。我发现我们再本科阶段学习的《高等数学》、《线性代数》、《概率论与数理统计》在计算机学科应用较多的要数概率论与数理统计,还有一门我学的不好的《离散数学》在计算机中也是有着举足轻重的地位。我在看米歇尔的《机器学习》时也发现很多熟悉的概率论与数理统计的知识,这让我不得不开始考虑重新弥补自己的数学短板。我的想法是在研一这一年把概率论与数理统计、线性代数、离散数学尽我最大的努力补一补,希望他们对我今后的学习有所帮助。

吴军博士写的书对于学习计算机的学生来说,读起来有种说不出的亲切感。可能这跟他是技术出身的原因有关,流畅的文笔、质朴的文风也让人读起来很舒服。看高晓松在优酷上的《晓说》就知道,在硅谷有着众多的华裔工程师,他们很多都来自清华、北大等国内的名牌大学,这些人在美国实现着自己的梦想。吴军博士也曾是这其中的一员,我非常希望那些像吴军博士一样的牛人们能够写书或者来国内的大学做一些演讲、论坛等等,开阔一下我们的视野,传授一下做学问的经验。与此同时,我也在想为什么我们国家那么多优秀的it人才都去了美国。

这个问题在我去苹果公司在东软信息学院组织的培训过程中得到了答案,那个南京邮电的老师讲了讲中国为什么不像美国那么有创造力。我们中国人并不缺乏创造力,很多时候是我们所处的外部环境恰恰阻碍了创新。我想那么多优秀的清华北大学子纷纷到大洋彼岸的美国,正是被美国开放的学术环境、创新氛围所吸引,每个人都有自己的梦想,他们去美国也是为了能实现自己的梦想。以前都觉得他们是不爱国,现在长大了,对于这个问题看得更清楚了一点。

我想说我们的祖国在经历了改革开放30多年的飞速发展之后,目前正处于一个关键和脆弱的时期。我们靠着人口红利取得了巨大的成就,我们能不能凭借人才红利取得更大的成就还是未知。希望有更多的人才能像李开复博士、吴军博士那样,为我们这个民族青年的成长和国家发展做出贡献。

数学之美读后感篇九

看完《浪潮之巅》,了解了硅谷很多公司尤其是互联网公司的沉浮,对吴军的书就非常感兴趣,看到吴军的另一本书《数学之美》,激起了很深的兴趣,所以很快把书看完了,普及了很多基础的知识的同时也启发了很多想法,感觉很爽。

我自己在交大学的是工科,小学、初中、高中都是一路参加数学竞赛,名次都还不错,也因此没有参加中考、高考,一路保送,自己对数学有很深的感情,同时女朋友大学也是数学系,有点后悔的大学选了个并不感兴趣的专业(交大当时允许我随便选专业,我没有跟父母商量自己选了船舶制造)。

书名叫做《数学之美》,显得有些太大,毕竟更多的是吴军在google做搜索相关工作用到的数学模型的介绍与总结,提到的数学部分大多集中在概率论、图论、数论领域,所以书名太大了,可能hax说得对,也许是出版社为了卖书取得名字。

不得不说吴军是一个大家,文字中能够透露出大家的气势,书中不断的穿插着各种历史上的大科学家以及科技领域的大家的小故事甚至八卦,从文字中非常能够感受到吴军是一个和他们一个层次的人。

书中具体的模型就不介绍了,说几点我学到的知识,能列出来的都是看完还有点印象的:

1、在互联网的世界中,信息是如何量化的,信息熵是怎么回事?有啥用?

2、搜索领域中,语言是如何统计的,尤其是如何通过概率模型进行分词。

3、搜索引擎是如何工作的—网络爬虫是怎么回事儿。

4、pagerank是怎么回事?为了解决什么问题?

6、拼音输入法的数学模型。

7、文本自动分类的模型。

看完之后最大的感受就是:

1、数学模型巨大作用,推动着新技术的发展。

2、攻城师是一个伟大的职业,能够运用这些知识转化为生产力,非常牛叉。

3、书中提到了很多数学模型都是在不断的进化、改良、升级,也就是说有人不断的在做优化,会有不断更好的模型、更新的技术出现,跟得上技术的发展可能也是比较重要的,否则很多人一直在做某一点上的持续优化就没有意义了。

但同时技术很大的作用是用来解决实际问题的,书中提到的各个数学模型、各种方法都是为了解决人们的需求或者业务的需求,毕竟公司不是科学研究所,所以追求通过技术直接解决用户需求或者做成易用的工具给业务人员、运营人员来间接解决用户需求是挺重要的,可能不是技术人员觉得做到80分就可以了,而是用户、使用工具的人觉得做到80分是一个重要的衡量。

提到“工具”,想到赵赵说过的一句话:“不好用就等于没有”,可能就是这个点,同时运用工具的人必须好好的运用,如果用不好甚至不用就太对不起技术了。

数学之美读后感篇十

顾沛是一位著名的数学家和教育家,他的数学思维和教育理念引领了整个数学领域的发展。在他长达五十年的数学教育生涯中,他总结出了许多实用的数学方法,给学生们带来了很多的好处。今天,让我们一起来探讨一下顾沛所提倡的数学思维,以及他对数学之美的感悟。

第二段:数学思维的重要性。

在顾沛看来,数学思维是指用数学知识和思维方法解决实际问题的能力,它是培养我们逻辑思维和创新能力的关键。与此同时,数学思维也可以帮助我们克服困难、分析复杂的现象和问题,这是现代社会所需要的一种综合能力。因此,顾沛所提倡的数学思维在如今的教育中显得尤为重要。

作为一名数学家,顾沛对数学充满了热爱和敬畏。在他的视野中,数学之美主要体现在以下几个方面:

首先,数学在本质和形式上都是简单的。不管是质数还是最大公因数、最小公倍数,看似复杂的数学问题,都可以通过简单的规律和公式进行求解。

其次,数学是严密的。数学中的每个结论都必须经过正确的推导和证明,每一步都不能有丝毫的差错,不然就会破坏整个推导过程。

最后,数学是美的。数学中的一些规律和结论都是美妙的、优美的,甚至可以被称为“数学之美”。

第四段:顾沛的教育理念。

顾沛对数学教育有着独特的见解和理念。他认为,教育不应该是一种死板的灌输方式,而应该是一种积极的引导和启发式的学习,在教育中应该注重培养学生的创造性和创新性,使学生们在学习中体会到数学之美。

同时,顾沛还提出了“教学与研究相结合”的教育理念。他认为,只有在教学中不断地钻研研究,才能领悟数学的深层次意义和本质,这也是他所提倡的“以学生为中心”的教育方法的一种体现。

第五段:结语。

顾沛以其独特的视角和对数学的热爱,开发了很多数学思维和教育理念,并且在数学教育中取得了许多成就。在现代社会中,数字和计算已经成为了不可或缺的一部分,而数学思维则是我们在竞争中必须要具备的一种能力。因此,在我们的学习和生活中,我们也应该多关注顾沛的教学思想,不断探索、学习和运用数学知识,感悟并发掘数学之美。

数学之美读后感篇十一

最近看了这本《数学之美》,不得不感叹一句,可惜早已身不在起点。

看了《数学之美》,惊叹于数学的浩瀚和简单,说它浩瀚,是因为它的分支涵盖了科学的方方面面,是所有科学的理论基础,说它简单,无论多复杂的问题,最后总结的数学公式都简单到只有区区几个符号和字母。

这本书介绍数学理论在互联网上的运用,平时我们在使用互联网搜索或者翻译功能的时候,时常会感叹电脑对自己的了解和它的聪明,其实背后的原理就是一个个精美的算法和大量数据的训练。那些或者熟悉或者陌生的数学知识(联合概率分布,维特比算法,期望最大化,贝叶斯网络,隐形马尔可夫链,余弦定律,etc),一步步构建了我们现在所赖以生存的网上世界。

之所以觉得自己早已身不在起点,是因为上面这些数学知识,早已经不在我的知识框架之内,就算曾经学过,也不过是囫囵吞枣一样的强记硬背,没有领会过其中的真正意义。而今天想重头在来学一次,其实已经不可能了。且不说要花费多少的精力和时间,还需要的是领悟力。而这一些,已经不是我可以简单付出的。

不像物理、化学需要复杂的实验来验证,很多数学的证明,几乎只要有一颗聪明的头脑和无数的草稿纸,可是光是这颗聪明的头脑,就可以阻拦掉很多人。有人说多读书就会聪明,我不否认,书本的确会提供很多知识,可是不同的人读同一本书也会有不同的收货,这就限制于每个人的知识框架和认知水平。就如一个数学功底好过我的人,看这本书,就会更容易理解里面的公式和推导出这些公式的其他运用点,而我,只能站在数学的门口,感叹一句,它真的好美吧。

1)一个产业的颠覆或者创新,大部分来自于外部的力量,比如用统计学原理做自然语言处理。

2)基础知识和基础数据是很重要性,只有足够多和足够广的数据,才可以提供有效的分析,和验证分析方法的好坏。

3)先帮用户解决80%的问题,在慢慢解决剩下的20%的问题;

4)不要等一个东西完美了,才发布;

5)简单是美,坚持选择简单的做法,这样会容易解释每一个步骤和方法背后的道理,也便于查错。

6)正确的模型也可能受噪音干扰,而显得不准确;这时不应该用一种凑合的修正方法加以弥补,而是要找到噪音的根源,从根本上修正它。

7)一个人想要在自己的领域做到世界一流,他的周围必须有非常多的一流人物。

数学之美读后感篇十二

――邓毅雄。

读来确实有感:数学美。

――邓毅雄。

这本书,主要涉及自然语言处理、网络搜索引擎等问题,介绍解决问题的数学方法,这些方法基本不属高大上,用到的数学知识并不复杂,有的甚至属中等数学,如余弦定理。像较好解决复杂的自然语言识别与翻译的统计方法,只是条件概率与马尔可夫链的应用;解决网页排名的pagerank算法,其核心是数学的n维向量和数值计算中的迭代法;密码学中的公开密钥方法,仅仅是较大素数的乘、除运算而已,等等。复杂的现实问题,简单的数学方法,彰显数学之韵味和数学之美。

数学之美,源自数学的概括与抽象。而数学的抽象,又恰恰是许多人难以接受数学之梗阻。所以,一般来说,能够欣赏到数学之美,必有一定的数学基础。不过,吴军的《数学之美》,语言通俗,略沉心境,顺利读懂其要义,应该是不难的事。有这种说法,真正的大师,能够将复杂的东西,通俗表达。这话我不尽信,但也确实佩服那些把数学理论通俗易懂、形象生动描述的专家,读了《数学之美》,觉得吴军博士不错。

人类发明了许许多多的语言,如自然语言(包括各国各民族的语言)、音乐、绘画等,数学也是一种语言。读懂各种语言,需要下一定功夫,只是有些语言本身比较通俗,功夫不用太深,但像数学这样的语言,数字化,符号化,抽象化,逻辑化,难言大众望而生畏,也着实不少人望而却步。如果我们的数学老师们,能够将这些“化”都“简化”,或者尽量简化些,那是不是有更多的人有迎难而上的勇气呢?也许吧!然而,毕竟数学除了作为工具性角色,还要培养和训练人的思维,一味地简化和通俗,那种逻辑思维的特征要素,失之亦可惜呀。前些日,读了保罗.洛克哈特(美国)的《度量:一首献给数学的情歌》,其对形状和运动的度量叙述,非常通俗,给人启发,但对我这数学背景出身的人来说,因思想深处固守那份对抽象性和逻辑性的呆痴,而总感觉其味不够,犹如爱好辣味的江西人,怕不辣二无味。

五世纪著名数学评论家普洛克拉斯说:“哪里有数,那里就有美”。我国著名数学家华罗庚说:“就数学本身而言,是壮丽多彩、千姿百态、引人入胜的……认为数学枯燥乏味的人,只是看到了数学的严谨性,而没有体会出数学的内在美。”数学之美表现丰富,如美的形式符号、美的公式、美的曲线、美的曲面、美的证明、美的方法、美的理论等。从内容来说,数学之美有可分为结构美、语言美与方法美,数学也有简洁之美、对称之美、和谐之美。罗素说,数学的美,“是一种冷而严肃的美”。所以,欣赏数学的美,是需要一定能力和技巧的。

数学的应用,也是数学美的特征。科学发展到现在,数学应用无处不在,数学应用的方法很多。一个数学的抽象,包含了无穷的客观现实。解决问题,尽量方法简单,能简不繁,是一种原则。数学应用之美,就在于简单,在于巧妙,在于效奇。

作者:邓毅雄。

数学之美读后感篇十三

数学,是一门独具美感的科目,是一种有多重美感的学科,虽然没有那么深动多趣的语言,但却是富有所有学科都比不上的精准。

数学用于生活。在建筑物的构造时便会用到数学中对称数和比例美;在玩具或许多模型的制造中也会用到数学美;在战斗时许多飞机的外视也利用到了数学类。就举个离生活最近的例子吧,例如:一个生字本当你用的时候,你会发现就连语文写字的格子纸的大小都是照着一定的比例来生产的。

数学中还有推理美,推理是一种重要的数学思维和方法。通过对本册书数学广角和数学思考的学习,可以对推理有初步的认识,并对数学的严密性和科学性有更深的体会。

数学对于一个事物的准确性的表达也是可以转换为其他形式来表示的,例如我刚刚学过的比例尺,是由“图上距离”比“实际距离”路程的1比500可以写成分数形式为1/500,可以写成比的形式1:500,还可以写成文字形式一比五百。数字也可能变得难懂比例尺也有的人会认为是把尺子,有的人会认为比例尺是几组固定的数字,但严格来讲它是一种比。

数字美无处不在,无穷不尽,只要你用心就会发现,发现数学的美与乐趣。

数学之美读后感篇十四

在语音识别、翻译,还有密码学领域,有着许多基于概率统计的模型和思想。当然,贝叶斯公式是基础,应用到隐含马尔科夫链模型,神经网络模型。

在搜索中,一些相关性的计算,无不用到了概率的知识。在新闻分类中,用到了一些有关矩阵特征值、相似对角化的知识。当然,在图像处理方面,矩阵变换可谓是无处不在。另外,在识别方面,有一些通信模型,涉及到了信道、误码率、信息熵。

最近刚开学也没什么事,所以就想随便找几本书看一下,但别是那种太艰深晦涩的书。8月份一直到现在,吴军写的这本12年5月出版的《数学之美》一直盘踞京东、亚马逊等各大网上商城科技类图书的榜首,当然,还有早些时候出版的《浪潮之巅》也排在很靠前的位置。心想市场的力量应该能帮我挑出好书吧,于是就从图书馆借了一本来,一直到今天晚上把它给看完了。

因此想写一点东西来总结、反思一下,反正刚开完班会也没什么事干。

写在前面的建议:如果你不讨厌数学的话,强烈推荐这本书,网上也可以下到电子版,不过阅读感觉上还是很不一样的。

废话就不多说了,《数学之美》其实是一本科普类的读物,所面向的是接受过普通高等教育的人,完全不需要在特定领域有很深的造诣就可以看懂,大概懂一点线性代数、概率统计、组合数学、信息论、计算机算法、模式识别(虽然列举了这么多,其实有些不懂也没关系……),所以尤其适合信科的人看。内容大部分是和人工智能、计算机相关的,这并非我所学的专业,但作者比较擅长将看似复杂的原理用简明的语言表达出来,所以可读性还是很好的。

吴军是清华大学毕业的,之前任职于google,后来到了腾讯,这些文章都是发表在google黑板报上的,后来经过了重写,所以网上下载的和书本内容有所差异。由于吴军本人是研究自然语言处理和语音识别的,所以统计语言模型的东西可能会多一点,不过我觉得这丝毫不妨碍全书数学之美的展现……感觉收获还是挺多的,知识上的有一些,但更多还是思维方式上的。作者举了很多例子试图让人明白很多看似复杂的高科技背后,基本原理其实是出乎意料简单的(当然,必须承认第一个想到这些方法的人还是非常了不起的……)。比如高准确率的机器翻译,看上去好像是计算机能够理解各国语言,隐藏在背后的却是很多具有大学理科学历的人都非常清楚的统计模型和概率模型;再比如拼音输入法的数学原理,早期的研究主要集中在缩短平均编码长度,比如曾经流行一时的五笔输入法,而现今真正实用的输入法却是有很多信息冗余、编码长度比较长的拼音输入法,作者从信息论和市场的角度做了简单的阐述;又比如新闻的自动分类,许多非it领域的人可能会认为计算机可以读懂新闻并进行分类,而实际上只是特征向量的抽取、空间中向量夹角的计算,非常非常简单,但凡学过一点线性代数的人绝对是一看就懂的……当然,完美的实现还需要考虑很多细节和现实的情况,但这并不是这本书所关注的地方,数学之美在于其简洁而不是繁琐。

除了对于具体信息技术的剖析之外,作者还花了很大篇幅来讲一些杰出人士的成长过程,特别是把这些人的成长经历和中国学生的成长经历作对比。虽然作者并没有明说,但字里行间多少流露出对于中国高等教育以及很多中国企业的批评,一是教育的功利性,缺乏宽松的独立思考的环境,即使学了一堆理论也难有用武之地,自然也就缺乏创新性的成果;二是中国企业的短视,大部分都不舍得在新框架开发上投资,而是坐享学术界和国外企业的研究成果。

总结一下呢,能够从更宏观的角度来思考信息世界背后的数学引擎的运行原理,让人明白看似很高级、复杂的东西背后其实并不如我们所想象的那样复杂,而我们所学的“枯燥”的数学真的可以“四两拨千斤”,改变亿万人的生活。

数学之美读后感篇十五

这本书一共31章,主要介绍了这些数学方法:统计方法、统计语言模型、中文信息处理、隐含马尔科夫模型、布尔代数、图论、网页排名技术、信息论、动态规划、余弦定理、矩阵运算、信息指纹、密码学、搜索技术、数学模型、最大熵模型、拼音输入法、贝叶斯网络、句法分析、维特比算法、各个击破算法等。从第一章开始其明了幽默的语言就深深的吸引了我,让我觉得如果早一点看这本书,也许数学之于我就是另一番天地。

第一章里作者从原始人类的通信方式开始入手,人类最早利用声音进行的通信依赖于开篇给出的"编码-传输-解码"的基本原理,指出原始人的通信方式和今天的通信方式没什么不同,这世界上近现代最普遍的原理大部分都在人类发展的历史上被无意识的使用着。

第六章信息论给出了信息的度量,它是基于概率的,概率越小,其不确定性越大,信息量就越大。引入信息量就可以消除系统的不确定性,同理自然语言处理的‘大量问题就是找相关的信息。信息熵的物理含义是对一个信息系统不确定性的度量,这一点与热力学中的熵概念相同,看似不同的学科之间也会有着很强的相似性。事务之间是存在联系的,要学会借鉴其他知识。

这本书里也能找到不少在学的课程知识,如大学专业课里,数电总是要比模电简单不少,而自然界里大部分的信号都属于模拟信号。所谓模拟信号,是指从时间和数值两种维度上看来都是连续变化的信号。在实际电路中,模/数转换是一个很重要的过程,将预处理的模拟信号经过模/数变换为数字信号,然后进行数字信号处理。而数字化处理有很多优点,比如功能强大、抗干扰能力强、易于传输等。

简而言之,如果没有数学,就没有数字信号处理和传输的概念,而数字信号传输在当下大规模的集成电路里是必不可少的,这是通信成功的基本要求。

作者把生活中遇到的复杂的问题,以简单清晰,直观的模型或者公式展现出来。我们可能过于注意生活中的种种奇妙现象,往往忽略了追求其理论逻辑的演绎,而这也是大部分问题的主要根源。

罗素曾经说过:"数学,如果正确地看,不但拥有真理,而且也具有至高的美";爱因斯坦也曾说过:"纯数学使我们能够发现概念和联系这些概念的规律,这些概念和规律给了我们理解自然现象的钥匙。"数学在所有科学领域起着基础和根本的作用。"哪里有数,哪里就有美".在这里,我也想把《数学之美》真诚推荐给每一位对自然、科学、生活有兴趣有热情的朋友,不管你是从事职业,读一读它,会让你受益良多。

吴军老师在《数学之美》中提到:"这本书的目的是讲道而不是讲术。很多具体的搜索技术很快会从独门绝技到普及,再到落伍,追求术的人一辈子工作很辛苦。只有掌握了搜索的本质和精髓才能永远游刃有余".回到我们日常的生活中,需要学习的东西、技术太多太多,如果一味地只为去追技术的脚步,那么我们也会很累很累。然而基本的原理却是没有怎么变化的。只见森林,不见树木,难免迷失;站在高处向下看,也许我们一直看不到底,但是站在底处却是可以看见底的。

数学之美读后感篇十六

这本书一共3章,主要介绍了这些数学方法:统计方法、统计语言模型、中文信息处理、隐含马尔科夫模型、布尔代数、图论、网页排名技术、信息论、动态规划、余弦定理、矩阵运算、信息指纹、密码学、搜索技术、数学模型、最大熵模型、拼音输入法、贝叶斯网络、句法分析、维特比算法、各个击破算法等。从第一章开始其明了幽默的语言就深深的吸引了我,让我觉得如果早一点看这本书,也许数学之于我就是另一番天地。

第一章里作者从原始人类的通信方式开始入手,人类最早利用声音进行的通信依赖于开篇给出的"编码—传输—解码"的基本原理,指出原始人的通信方式和今天的通信方式没什么不同,这世界上近现代最普遍的原理大部分都在人类发展的历史上被无意识的使用着。

第六章信息论给出了信息的度量,它是基于概率的,概率越小,其不确定性越大,信息量就越大。引入信息量就可以消除系统的不确定性,同理自然语言处理的大量问题就是找相关的信息。信息熵的物理含义是对一个信息系统不确定性的度量,这一点与热力学中的熵概念相同,看似不同的学科之间也会有着很强的相似性。事务之间是存在联系的,要学会借鉴其他知识。

这本书里也能找到不少在学的课程知识,如大学专业课里,数电总是要比模电简单不少,而自然界里大部分的信号都属于模拟信号。所谓模拟信号,是指从时间和数值两种维度上看来都是连续变化的信号。在实际电路中,模数转换是一个很重要的过程,将预处理的模拟信号经过模数变换为数字信号,然后进行数字信号处理。而数字化处理有很多优点,比如功能强大、抗干扰能力强、易于传输等。

简而言之,如果没有数学,就没有数字信号处理和传输的概念,而数字信号传输在当下大规模的集成电路里是必不可少的,这是通信成功的基本要求。

作者把生活中遇到的复杂的问题,以简单清晰,直观的模型或者公式展现出来。我们可能过于注意生活中的种种奇妙现象,往往忽略了追求其理论逻辑的演绎,而这,也是大部分问题的主要根源。

罗素曾经说过:"数学,如果正确地看,不但拥有真理,而且也具有至高的美";爱因斯坦也曾说过:"纯数学使我们能够发现概念和联系这些概念的规律,这些概念和规律给了我们理解自然现象的钥匙。"数学在所有科学领域起着基础和根本的作用。"哪里有数,哪里就有美"。在这里,我也想把《数学之美》真诚推荐给每一位对自然、科学、生活有兴趣有热情的朋友,不管你是从事职业,读一读它,会让你受益良多。

吴军老师在《数学之美》中提到:"这本书的目的是讲道而不是讲术。很多具体的搜索技术很快会从独门绝技到普及,再到落伍,追求术的人一辈子工作很辛苦。只有掌握了搜索的本质和精髓才能永远游刃有余"。回到我们日常的生活中,需要学习的东西、技术太多太多,如果一味地只为去追技术的脚步,那么我们也会很累很累。然而基本的原理却是没有怎么变化的。只见森林,不见树木,难免迷失;站在高处向下看,也许我们一直看不到底,但是站在底处却是可以看见底的。

数学之美读后感篇十七

本书介绍了google产品中涉及的自然语言处理、统计语言模型、中文分词、信息度量、拼音输入法、搜索引擎、网页排名、密码学等内容背后的数学原理。让我们看到了布尔代数、离散数学、统计学、矩阵计算、马尔科夫链等似曾相识的内容在实际生活中的应用。相比于其他数学题材书籍,吴军老师把抽象、深奥的数学方法解释得通俗易懂,书中同时引用了诸多的历史典故和人物介绍,给人以很多启发,也让人由衷感叹数学的简洁和强大。

虽是数据专业毕业,但是才疏学浅,无力对数学的美进行阐述。仅就书中两个比较喜欢的地方发表一点不成熟的见解,与诸位共勉。

其一,在讲google的搜素引擎反作弊时谈到做事情的两种境界“道”和“术”,术就是具体的做事方法,而道则是隐藏在问题背后的动机和本质。在术这个层面解决问题要付出更多的努力,有点类似于我们常说的“头疼医头,脚疼医脚”,暂时不疼了,过几天复发了,再去医治,如此往复,无法从根本上解决;而只有找到了致病原因,才能做到药到病除,根本治愈。本人之前参与过行内月终自动核对的研发,月终核对初期数据的不一致性只能靠数百业务人员人工核对数据差异,然后修改数据,每月1日都要加班加点,工作量很大,这是从术上解决问题。后来找到了产生差异的原因是会计核算时的利息调整造成的,把这些数据接过来进行相应冲减后差异就消失了,业务人员也不用来加班了,这才是从道上解决问题。

其二,是在做中文网页排名时提到的从业界成功的秘诀之一:“先帮助用户解决80%的问题,再慢慢解决剩下的20%的问题。许多时候做事失败,不是因为人不够优秀,而是做事的方法不对。一开始追求大而全的解决方案,之后长时间不能完成,最后不了了之”。我们在做项目时也是一样,业务有时要的功能非常急,可能有些功能也实现不了(比如系统响应时间长、查询明细不能支持省行等)。这时我们就要将焦点关注在那些可以实现的80%的功能上,哪怕刚刚上线的系统界面丑点,操作复杂点,反应速度慢点,但是至少业务有可用的系统,剩下时间再去优化那剩下的20%。这样可以帮助我行抢占先机,在与同行业的竞争中取得主动。如果等待我们把所有的细节都搞清楚再动手开发,力求完美,那么很可能系统能够上线的时候业务已经不需要了。

数学之美,也就是简单之美。希望大家能够喜欢数学,喜欢数学之美。

数学之美读后感篇十八

数学用在模型上而不是现实世界中,需要抽象思考出模型,即数学对象是其所做。数系扩充中,复数i并没有比无理数根号2更特殊的地方,因为它们作为抽象的数学构造,如果充分自然,则必能作为模型找到它们的用途。实际上正是如此。

数学中有个根本性的重要事实:数学论证中的每一步都可以不断地分解成更小更清晰有据的子步骤,但是这样的过程最终会终止。原则上,最终会得到一条非常长的论证,它以普遍接受的公理开始,仅通过最基本的逻辑原则一步步推进,最终得到想要求证的结论。所以,任何关于数学证明有效性的争论总是能够解决的。争论在原则上必然能够解决这一事实使数学作为一个学科是独一无二的。在这里,公理系统的主要问题不是真实性,而是自洽性和有用性,即数学证明就是由特定前提能够得出特定结论,而不考虑该前提是否正确。

我不清楚这一“根本性的重要事实”在现实中的使用范围有多大,但由此可以聊一点别的问题。现实中,如果甲对事情有a观点(或说价值观),乙有b观点,并为此争执。有下面几种情况:

1、在上述的范围之外,即没有定论。

2、有定论,但是双方都没有给出足够的证据证明和反驳。

3、有定论,一方给出了足够的证据(或者反驳理由),因为表达能力导致表述不清晰而没有说服对方。

4、有定论,一方给出了足够的证据(或者反驳理由),因为对方理解不够或理解偏差导致没有被说服。第234条与这几项有关:知识量,表达能力,理解能力,对外界的认知和自我认知。其中语言本身的局限性会一定程度上影响表达和理解,认知能力是一项综合的要求很高的能力。“评论”这件事就是个很合适的例子。如果说创造更需要的是才气,那么评论更需要的就是能力。但是,无论双方是否知道有无定论,很多情况下需要陈述不少或很多证据或反驳理由,由第234条可知人与人交流的效率很低,并且可能伴随一些冲突。若考虑到一些人的利益因素等,交流会更复杂。

猜你喜欢