2025年高中数学教学设计例题(精选18篇)
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。 高中数学教学设计例题篇一高中数学教学应鼓励学生用数学去解决问题,甚至去探索一些数学本身的问题。教学中,教师不仅要培养学生严谨的逻辑推理能力、空间想象能力和运算能力,还要培养学生数学建模能力与数据处理能力,加强在“用数学”方面的教育。最好的方式就是用多媒体电脑和诸如《几何画板》、《几何画王》、《几何专家》等工具软件,为学生创设数学实验情境。例如,在上“棱柱和异面直线”课时,我们指导学生用硬纸制作“长方体”和“正三棱柱”等模型。教师用《几何画板》设计并创作“长方体中的异面直线”课件,引导学生利用自己制作的“长方体”模型和上述课件,思考以下问题:“长方体中所有体对角线(4条)与所有面对角线(12条)共组成多少对异面直线?”、“长方体中所有体对角线(4条)与所有棱(12条)共组成多少对异面直线?”、“长方体中所有棱(12条)之间相互组成多少对异面直线?”、“长方体所有面对角线(12条)与所有棱(12条)共组成多少对异面直线?”、“长方体中所有面对角线(12条)之间相互组成多少对异面直线?”。然后由学生独立进行数学实验,探讨上述问题。 此外,教师还要根据数学思想发展脉络,充分利用实验手段尤其是运用现代教育技术,创设教学实验情景、设计系列问题、增加辅助环节,有助于引导学生通过操作、实践,探索数学定理的证明和数学问题的解决方法,让学生亲自体验数学建模过程,培养学生的数学创新能力和实践能力,提高数学素养。 巧设情境,增加学生的投入感。 为了构建生动活泼富有个性的数学课堂,我把创设情境,激发学生的学习兴趣当成数学教学的重头戏,使之成为数学课的一道亮丽的风景。《数学课程标准》强调数学课堂教学必须注意从学生熟悉的生活情境和感兴趣的事物出发,使学生有更多的机会从周围熟悉的事物中学习数学,理解数学,让学生感受到数学就在他们周围。因此,我从学生已有的生活经验出发,创设有趣的教学情境,强化学生的感性认识,丰富学生的学习过程,引导学生在情境中观察、操作、交流,感受数学与日常生活的密切联系,感受数学在生活中的作用,加深对数学的理解,并运用数学知识解决现实生活中的问题。如《课程标准》在综合实践的教学建议部分提供了这样一个案例: 要求学生统计自己家庭一周内丢弃的塑料袋个数,并依据所收集的数据展开讨论。其程序是:(1)作为家庭作业提出此问题;(2)学生自主进行统计活动;(3)请某学生在课堂上对结果做现场统计(列出统计表,老师也把自己的统计结果融入其中);(4)统计分析(引导学生根据数据对全班一周丢弃塑料袋情况用不同的算法进行描述和评价);(5)结合问题情境深入领会有关概念(如平均数、中位数、众数等)的含义,并通过问题的层层深入让学生进一步感受不同统计量来表示同一问题的必要性;(6)问题自然延伸(计算这些袋对土地造成的污染,先估计一个袋的污染,然后通过多种方式计算推及到一周呢?一年呢?全校同学的家庭呢?照此速度要多久就会污染整个学校呢?)。由此例可以看出,这种模式的一个关键点就是围绕着学生日常生活来展开的,由学生身边的事所引出的数学问题,使学生体会到数学与生活的紧密和谐关系,朴素的问题情境自然让学生产生一种情感上的亲和力和感召力,可以让他们真正应用数学,并引导他们学会做事。 高中数学教学设计例题篇二教学目标: (1)掌握直线方程的一般形式,掌握直线方程几种形式之间的互化。 (2)理解直线与二元一次方程的关系及其证明。 教学用具:计算机。 教学方法:启发引导法,讨论法。 教学过程: 下面给出教学实施过程设计的简要思路: (一)引入的设计。 前边学习了如何根据所给条件求出直线方程的方法,看下面问题: 问:说出过点(2,1),斜率为2的直线的方程,并观察方程属于哪一类,为什么? 答:直线方程是,属于二元一次方程,因为未知数有两个,它们的最高次数为一次。 肯定学生回答,并纠正学生中不规范的表述.再看一个问题: 问:求出过点,的直线的方程,并观察方程属于哪一类,为什么? 答:直线方程是(或其它形式),也属于二元一次方程,因为未知数有两个,它们的最高次数为一次。 肯定学生回答后强调“也是二元一次方程,都是因为未知数有两个,它们的最高次数为一次”。 启发:你在想什么(或你想到了什么)?谁来谈谈?各小组可以讨论讨论。 学生纷纷谈出自己的想法,教师边评价边启发引导,使学生的认识统一到如下问题: 【问题1】“任意直线的方程都是二元一次方程吗?” 这是本节课要解决的第一个问题,如何解决?自己先研究研究,也可以小组研究,确定解决问题的思路。 学生或独立研究,或合作研究,教师巡视指导. 经过一定时间的研究,教师组织开展集体讨论.首先让学生陈述解决思路或解决方案: 思路一:…。 思路二:…。 教师组织评价,确定最优方案(其它待课下研究)如下: 按斜率是否存在,任意直线的位置有两种可能,即斜率存在或不存在。 当存在时,直线的截距也一定存在,直线的方程可表示为,它是二元一次方程。 当不存在时,直线的方程可表示为形式的方程,它是二元一次方程吗? 学生有的认为是有的认为不是,此时教师引导学生,逐步认识到把它看成二元一次方程的合理性: 平面直角坐标系中直线上点的坐标形式,与其它直线上点的坐标形式没有任何区别,根据直线方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的。 综合两种情况,我们得出如下结论: 在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的关于、的二元一次方程。 至此,我们的问题1就解决了.简单点说就是:直线方程都是二元一次方程.而且这个方程一定可以表示成或的形式,准确地说应该是“要么形如这样,要么形如这样的方程”。 同学们注意:这样表达起来是不是很啰嗦,能不能有一个更好的表达? 学生们不难得出:二者可以概括为统一的形式。 这样上边的结论可以表述如下: 在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的形如(其中、不同时为0)的二元一次方程。 启发:任何一条直线都有这种形式的方程.你是否觉得还有什么与之相关的问题呢? 【问题2】任何形如(其中、不同时为0)的二元一次方程都表示一条直线吗? 师生共同讨论,评价不同思路,达成共识: (1)当时,方程可化为。 这是表示斜率为、在轴上的截距为的直线。 (2)当时,由于、不同时为0,必有,方程可化为。 这表示一条与轴垂直的直线。 因此,得到结论: 在平面直角坐标系中,任何形如(其中不同时为0)的二元一次方程都表示一条直线。 为方便,我们把(其中不同时为0)称作直线方程的一般式是合理。 【动画演示】。 演示“直线各参数”文件,体会任何二元一次方程都表示一条直线。 至此,我们的第二个问题也圆满解决,而且我们还发现上述两个问题其实是一个大问题的两个方面,这个大问题揭示了直线与二元一次方程的对应关系,同时,直线方程的一般形式是对直线特殊形式的抽象和概括,而且抽象的层次越高越简洁,我们还体会到了特殊与一般的转化关系. (三)练习巩固、总结提高、板书和作业等环节的设计。 高中数学教学设计例题篇三掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题. 掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题. 等比数列性质请同学们类比得出. 【方法规律】。 1、通项公式与前n项和公式联系着五个基本量,“知三求二”是一类最基本的运算题.方程观点是解决这类问题的基本数学思想和方法. 2、判断一个数列是等差数列或等比数列,常用的方法使用定义.特别地,在判断三个实数。 a,b,c成等差(比)数列时,常用(注:若为等比数列,则a,b,c均不为0)。 3、在求等差数列前n项和的最大(小)值时,常用函数的思想和方法加以解决. 【示范举例】。 例1:(1)设等差数列的`前n项和为30,前2n项和为100,则前3n项和为. (2)一个等比数列的前三项之和为26,前六项之和为728,则a1=,q=. 例2:四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数. 例3:项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,求该数列的中间项. 文档为doc格式。 高中数学教学设计例题篇四1、数学知识:掌握等比数列的概念,通项公式,及其有关性质;。 2、数学能力:通过等差数列和等比数列的类比学习,培养学生类比归纳的‘能力;。 归纳——猜想——证明的数学研究方法;。 3、数学思想:培养学生分类讨论,函数的数学思想。 重点:等比数列的概念及其通项公式,如何通过类比利用等差数列学习等比数列;。 难点:等比数列的性质的探索过程。 教学过程: 1、问题引入: 前面我们已经研究了一类特殊的数列——等差数列。 问题1:满足什么条件的数列是等差数列?如何确定一个等差数列? (学生口述,并投影):如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。 要想确定一个等差数列,只要知道它的首项a1和公差d。 已知等差数列的首项a1和d,那么等差数列的通项公式为:(板书)an=a1+(n-1)d。 师:事实上,等差数列的关键是一个“差”字,即如果一个数列,从第2项起,每一项与它前一项的差等于同一个常数,那么这个数列就叫做等差数列。 (第一次类比)类似的,我们提出这样一个问题。 问题2:如果一个数列,从第2项起,每一项与它的前一项的……等于同一个常数,那么这个数列叫做……数列。 (这里以填空的形式引导学生发挥自己的想法,对于“和”与“积”的情况,可以利用具体的例子予以说明:如果一个数列,从第2项起,每一项与它的前一项的“和”(或“积”)等于同一个常数的话,这个数列是一个各项重复出现的“周期数列”,而与等差数列最相似的是“比”为同一个常数的情况。而这个数列就是我们今天要研究的等比数列了。)。 2、新课: 1)等比数列的定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。这个常数叫做公比。 师生共同简要回顾等差数列的通项公式推导的方法:累加法和迭代法。 公式的推导:(师生共同完成)。 若设等比数列的公比为q和首项为a1,则有: 方法一:(累乘法)。 3)等比数列的性质: 下面我们一起来研究一下等比数列的性质。 通过上面的研究,我们发现等比数列和等差数列之间似乎有着相似的地方,这为我们研究等比数列的性质提供了一条思路:我们可以利用等差数列的性质,通过类比得到等比数列的性质。 问题4:如果{an}是一个等差数列,它有哪些性质? (根据学生实际情况,可引导学生通过具体例子,寻找规律,如: 3、例题巩固: 例1、一个等比数列的第二项是2,第三项与第四项的和是12,求它的第八项的值。 答案:1458或128。 例2、正项等比数列{an}中,a6·a15+a9·a12=30,则log15a1a2a3…a20=_10____. (本题为开放题,没有唯一的答案,如对于{cn}:2,4,8,16,……,2n,……,则ck=2k=2×2k-1,所以{cn}中的第k项是等差数列中的第2k-1项。关键是对通项公式的理解)。 1、小结: 今天我们主要学习了有关等比数列的概念、通项公式、以及它的性质,通过今天的学习。 我们不仅学到了关于等比数列的有关知识,更重要的是我们学会了由类比——猜想——证明的科学思维的过程。 2、作业: p129:1,2,3。 1、教学目标和重难点:首先作为等比数列的第一节课,对于等比数列的概念、通项公式及其性质是学生接下来学习等比数列的基础,是必须要落实的;其次,数学教学除了要传授知识,更重要的是传授科学的研究方法,等比数列是在等差数列之后学习的因此对等比数列的学习必然要和等差数列结合起来,通过等比数列和等差数列的类比学习,对培养学生类比——猜想——证明的科学研究方法是有利的。这也就成了本节课的重点。 2、教学设计过程:本节课主要从以下几个方面展开: 1)通过复习等差数列的定义,类比得出等比数列的定义;。 2)等比数列的通项公式的推导;。 3)等比数列的性质;。 有意识的引导学生复习等差数列的定义及其通项公式的探求思路,一方面使学生回顾旧。 知识,另一方面使学生通过联想,为类比地探索等比数列的定义、通项公式奠定基础。 在类比得到等比数列的定义之后,再对几个具体的数列进行鉴别,旨在遵循“特殊——一般——特殊”的认识规律,使学生体会观察、类比、归纳等合情推理方法的应用。培养学生应用知识的能力。 在得到等比数列的定义之后,探索等比数列的通项公式又是一个重点。这里通过问题3的设计,使学生产生不得不考虑通项公式的心理倾向,造成学生认知上的冲突,从而使学生主动完成对知识的接受。 通过等差数列和等比数列的通项公式的比较使学生初步体会到等差和等比的相似性,为下面类比学习等比数列的性质,做好铺垫。 等比性质的研究是本节课的高潮,通过类比。 关于例题设计:重知识的应用,具有开放性,为使学生更好的掌握本节课的内容。 高中数学教学设计例题篇五数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。 三角函数的诱导公式是普通高中课程标准实验教科书(人教a版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六)。本节是第一课时,教学内容为公式(二)、(三)、(四)。教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角与、终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四)。同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。为此本节内容在三角函数中占有非常重要的地位。 本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容。 (1)基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式; (4)个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观。 1、教学重点。 理解并掌握诱导公式。 2、教学难点。 正确运用诱导公式,求三角函数值,化简三角函数式。 “授人以鱼不如授之以鱼”,作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法,如何实现这一目的,要求我们每一位教者苦心钻研、认真探究。下面我从教法、学法、预期效果等三个方面做如下分析。 1、教法。 数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质。 在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”,由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦。 2、学法。 “现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情。如何能让学生最大程度的消化知识,提高学习热情是教者必须思考的问题。 在本节课的教学过程中,本人引导学生的学法为思考问题、共同探讨、解决问题简单应用、重现探索过程、练习巩固。让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习。 3、预期效果。 本节课预期让学生能正确理解诱导公式的发现、证明过程,掌握诱导公式,并能熟练应用诱导公式了解一些简单的化简问题。 (一)创设情景。 1、复习锐角300,450,600的三角函数值; 2、复习任意角的三角函数定义; 3、问题:由你能否知道sin2100的值吗?引如新课。 设计意图。 自信的鼓励是增强学生学习数学的自信,简单易做的题加强了每个学生学习的热情,具体数据问题的出现,让学生既有好像会做的心理但又有迷惑的茫然,去发掘潜力期待寻找机会证明我能行,从而思考解决的办法。 (二)新知探究。 1、让学生发现300角的终边与2100角的终边之间有什么关系; 2、让学生发现300角的终边和2100角的终边与单位圆的交点的坐标有什么关系; 3、sin2100与sin300之间有什么关系。 设计意图。 由特殊问题的引入,使学生容易了解,实现教学过程的平淡过度,为同学们探究发现任意角与的三角函数值的关系做好铺垫。 (三)问题一般化。 探究一。 1、探究发现任意角的终边与的终边关于原点对称; 2、探究发现任意角的终边和角的终边与单位圆的交点坐标关于原点对称; 3、探究发现任意角与的三角函数值的关系。 设计意图。 (四)练习。 利用诱导公式(二),口答下列三角函数值。 喜悦之后让我们重新启航,接受新的挑战,引入新的问题。 (五)问题变形。 高中数学教学设计例题篇六想方法,都是学生今后学习和工作中必备的数学素养。 (1)学生的已有的知识结构:掌握了等差数列的概念,等差数列的通项公式和求和公式与方法,等比数列的概念与通项公式。 (2)教学对象:高二理科班的学生,学习兴趣比较浓,表现欲较强,逻辑思维能力也初步形成,具有一定的分析问题和解决问题的能力,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因而片面、不够严谨。 (3)从学生的认知角度来看:学生很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q=1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。 根据教学大纲的要求、本节教材的特点和本班学生的认知规律,本节课的教学目标确定为:(1)知识技能目标————理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上,并能初步应用公式解决与之有关的问题。 (2)过程与方法目标————通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力。 (3)情感,态度与价值观————培养学生勇于探索、敢于创新的精神,从探索中获得成功的体验,感受数学的奇异美、结构的对称美、形式的简洁美。 教学重点:公式的推导、公式的特点和公式的运用。 教学难点:公式的推导方法及公式应用中q与1的关系。 获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。因此,本节课采用了启发式和探究式相结合的教学方法,让老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题。一句话:还课堂以生命力,还学生以活力。 (一)创设情境,提出问题。(时间设定:3分钟)。 提出问题1:同学们,你们知道西萨要的是多少粒小麦吗? 高中数学教学设计例题篇七(一)教材分析: 此次一对一家教所使用教材为北师大版高中数学必修5。辅导内容为第一章第二节等差数列。前一节的内容为数列,学生已初步了解到数列的概念,知道什么是首项,什么是通项等等。以及了解到什么是递增数列,什么是递减数列。通过第一节的学习的铺垫,可以让学生更自主的探究,学习等差数列。而我也是在这些基础上为她讲解第二节等差数列。 (二)学生分析:。 此次所带学生是一名高二的学生。聪明但是不踏实,做题浮躁。基础知识掌握不够牢靠,知识的运用能力较差,分析能力较弱,解题思路不清。每次她遇到会的题,就快快的草率做完,总会有因马虎而犯的错误。遇到稍不会的,总是很浮躁,不能冷静下来慢慢思考。就由略不会变成不会。但她也是个虚心听教的孩子,给她讲课,她也会很认真地听讲。 (三)教学目标: 1、通过教与学的配合,让她能够懂得什么是等差数列,以及等差数列的通项公式。 2、通过对公式的推导,让她加深对内容的理解,以及学会自己对公式的推导。并且能够灵活运用。 3、在教学中让她通过对公式的推导来明白推理的艺术,并且培养她学习,做题条理清晰,思路缜密的好习惯。 4、让她在学习,做题中一步步抽丝剥茧,寻找解决问题的方法,培养她敢于面对数学学习中的困难,并培养她对克服困难和运用知识。耐心地解决问题。 5、让她在学习中发现数学的独特的美,能够爱上数学这门课。并且认真对待,自主学习。 (四)教学重点:。 1、让学生正确掌握等差数列及其通项公式,以及其性质。并能独立的推导。 2、能够灵活运用公式并且能把相应公式与题相结合。 (五)教学难点: 1、让学生掌握公式的推导及其意义。 2、如何把所学知识运用到相应的题中。 二、课前准备。 (一)教学器材。 对于一对一教教采用传统讲课。一张挂历。 (二)教学方法。 通过对生活中的有规律数据的观察来提出问题,让学生结合前一节所学,思考有什么规律。从生活中着手有利于激发学生的兴趣爱好,并能更积极地学习。让学生先独立的思考,不仅能让她对所学知识映像更为深刻,并且培养她的缜密思维。让她回答后,我再帮助她纠正,并且让她提出心中所虑。经过我给她讲完课后,让她回答自己先前的疑虑。并且让她自己总结,得出结论。最后让她勤加练习。以一种“提出问题—探究问题—学习知识—解答问题—得出结论—强加训练”的模式方法展开教学。 (三)课时安排。 课时大致分为五部分: 联系实际提出相关问题,进行思考。 2、以我教她学的模式讲授相关章节知识。 3、让学生练习相关习题,从所学知识中找其相应解题方案。 4、学生对知识总结概括,我再对其进行补充说明。 5、布置作业,让她课后多做练习。 三、课程设计(一)提出问题引入根据我们的挂历上,一个月的日期数。 通过观察每一行日期和每一列日期它们有什么规律? 思考1)2)3)1,3,5,7,9。 2,4,6,8,10。 6,6,6,6,6。 这些每一行有什么规律? (二)分析问题并讲解。 4、由以上公式,性质,让学生总结。讲解等差数列的定义。并且掌握数列的递增,递减与公差d的关系。 5、总结,串讲当日所学。 给出题目,并思考如何快速计算? (三)布置作业。 总结当日所学。 2、做练习册上章节习题。 3、根据当日所学以及课上所讲求的思考题,找出快速运算方法,并引导预习等差数列前n项和。 四、设计理念。 以一种最简便,易懂的方式让学生来学习,一切以让学生正确掌握知识,并能正确运用为理念。并能充分调动学生和家教老师的积极性为理念来设计。 本节课教程内容较难,是下一节等差数列前n项和的铺垫。此节课学习通过联系实际,把数学融入到生活中,从生活中探究学习数学。并提出问题,分析问题。把主动权交给学生,由她先独立思考总结,再由我给她正确讲解总结,然后再让她做相应练习题,课后再认真总结。这样可以加强她学习的主动性,更有利于她对知识的消化,吸收。这种方法同时可以培养学生的思维能力,让她从自主学习中探索适合自己的学习方法,培养她独立思考的能力。让她更深刻的了解知识内涵,巩固所学。使她能灵活运用所学。 高中数学教学设计例题篇八为了更好地贯彻落实和科课程标准有关要求,促进广大教师学习现代教学理论,进一步激发广大教师课堂教学的创新意识,切实转变教学观念,积极探索新课程理念下的教与学,有效解决教学实践中存在的问题,促进课堂教学质量的全面提高,在20xx年由福建省普通教育教学研究室组织,举办了一次教学设计大赛活动。这次活动数学学科高中组共收到有49篇教学设计文章。获奖文章推荐评审专家组本着公平、公正的原则,经过认真的评审,全部作品均评出了相应的奖项;专家组还为获得一、二等奖的作品撰写了点评。本稿收录的作品全部是参加此次福建省教学设计竞赛获奖作者的文章。按照征文的规则,我们对入选作品的格式作了一些修饰,并经过适当的`整合,以飨读者。 在此还需要说明的是,为了方便阅读,获奖文章的排序原则,并非按照获奖名次的前后顺序,而是按照高中数学新课程必修1—5的内容顺序,进行编排的。部分体现大纲教材内容的文章则排在后面。 不管你获得的是哪个级别的奖项,你们都可以有成就感,因为那是你们用心、用汗浇灌出的果实,它记录了你们奉献于数学教育事业的心路历程。书中每一篇的教学设计都耐人寻味,都能带给我们许多遐想和启迪。你们是优秀的,在你们未来悠远的职业里程中,只要努力,将有更多的辉煌在等待着大家。谢谢你们! 1、集合与函数概念实习作业。 《普通高中课程标准实验教科书·数学(1)》(人教a版)第44页。-----《实习作业》。本节课程体现数学文化的特色,学生通过了解函数的发展历史进一步感受数学的魅力。学生在自己动手收集、整理资料信息的过程中,对函数的概念有更深刻的理解;感受新的学习方式带给他们的学习数学的乐趣。 该内容在《普通高中课程标准实验教科书·数学(1)》(人教a版)第44页。学生第一次完成《实习作业》,积极性高,有热情和新鲜感,但缺乏经验,所以需要教师精心设计,做好准备工作,充分体现教师的“导演”角色。特别在分组时注意学生的合理搭配(成绩的好坏、家庭有无电脑、男女生比例、口头表达能力等),选题时,各组之间尽量不要重复,尽量多地选不同的题目,可以让所有的学生在学习共享的过程中受到更多的数学文化的熏陶。 《标准》强调数学文化的重要作用,体现数学的文化的价值。数学教育不仅应该帮助学生学习和掌握数学知识和技能,还应该有助于学生了解数学的价值。让学生逐步了解数学的思想方法、理性精神,体会数学家的创新精神,以及数学文明的深刻内涵。 1、了解函数概念的形成、发展的历史以及在这个过程中起重大作用的历史事件和人物; 2、体验合作学习的方式,通过合作学习品尝分享获得知识的快乐; 3、在合作形式的小组学习活动中培养学生的领导意识、社会实践技能和民主价值观。 五、教学重点和难点。 重点:了解函数在数学中的核心地位,以及在生活里的广泛应用; 难点:培养学生合作交流的能力以及收集和处理信息的能力。 【课堂准备】。 1、分组:4~6人为一个实习小组,确定一人为组长。教师需要做好协调工作,确保每位学生都参加。 2、选题:根据个人兴趣初步确定实习作业的题目。教师应该到各组中去了解选题情况,尽量多地选择不同的题目。 高中数学教学设计例题篇九(1)知识与技能:了解集合的含义,理解并掌握元素与集合的“属于”关系、集合中元素的三个特性,识记数学中一些常用的的数集及其记法,能选择自然语言、列举法和描述法表示集合。 (2)过程与方法:从圆、线段的垂直平分线的定义引出“集合”一词,通过探讨一系列的例子形成集合的概念,举例剖析集合中元素的三个特性,探讨元素与集合的关系,比较用自然语言、列举法和描述法表示集合。 (3)情感态度与价值观:感受集合语言的意义和作用,培养合作交流、勤于思考、积极探讨的精神,发展用严密谨慎的集合语言描述问题的习惯。 (1)重点:了解集合的含义与表示、集合中元素的特性。 (2)难点:区别集合与元素的概念及其相应的符号,理解集合与元素的关系,表示具体的集合时,如何从列举法与描述法中做出选择。 [设计意图]引出“集合”一词。 【问题2】同学们知道什么是集合吗?请大家思考讨论课本第2页的思考题。 [设计意图]探讨并形成集合的含义。 【问题3】请同学们举出认为是集合的例子。 [设计意图]点评学生举出的例子,剖析并强调集合中元素的三大特性:确定性、互异性、无序性。 [设计意图]区别表示集合与元素的的符号,介绍集合中一些常用的的数集及其记法。理解集合与元素的关系。 [设计意图]引出并介绍列举法。 【问题6】例1的讲解。同学们能用列举法表示不等式x-73的解集吗? 【问题7】例2的讲解。请同学们思考课本第6页的思考题。 [设计意图]帮助学生在表示具体的集合时,如何从列举法与描述法中做出选择。 【问题8】请同学们总结这节课我们主要学习了那些内容?有什么学习体会? [设计意图]学习小结。对本节课所学知识进行回顾。布置作业。 高中数学教学设计例题篇十数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。 二、教材分析。 三角函数的诱导公式是普通高中课程标准实验教科书(人教a版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角与、、终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四).同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求.为此本节内容在三角函数中占有非常重要的地位. 三、学情分析。 本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容. 四、教学目标。 (1).基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;。 (4).个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观. 五、教学重点和难点。 1.教学重点。 理解并掌握诱导公式. 2.教学难点。 正确运用诱导公式,求三角函数值,化简三角函数式. 六、教法学法以及预期效果分析。 “授人以鱼不如授之以鱼”,作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法,如何实现这一目的,要求我们每一位教者苦心钻研、认真探究.下面我从教法、学法、预期效果等三个方面做如下分析. 1.教法。 数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质. 在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”,由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦. 2.学法。 “现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情.如何能让学生最大程度的消化知识,提高学习热情是教者必须思考的问题. 在本节课的教学过程中,本人引导学生的学法为思考问题、共同探讨、解决问题简单应用、重现探索过程、练习巩固。让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习. 3.预期效果。 本节课预期让学生能正确理解诱导公式的发现、证明过程,掌握诱导公式,并能熟练应用诱导公式了解一些简单的化简问题. (一)创设情景。 1.复习锐角300,450,600的三角函数值;。 2.复习任意角的三角函数定义;。 3.问题:由,你能否知道sin2100的值吗?引如新课. 设计意图。 自信的鼓励是增强学生学习数学的自信,简单易做的题加强了每个学生学习的热情,具体数据问题的出现,让学生既有好像会做的心理但又有迷惑的茫然,去发掘潜力期待寻找机会证明我能行,从而思考解决的办法. (二)新知探究。 1.让学生发现300角的终边与2100角的终边之间有什么关系;。 2.让学生发现300角的终边和2100角的终边与单位圆的交点的坐标有什么关系;。 2100与sin300之间有什么关系. 设计意图:由特殊问题的引入,使学生容易了解,实现教学过程的平淡过度,为同学们探究发现任意角与的三角函数值的关系做好铺垫. (三)问题一般化。 探究一。 1.探究发现任意角的终边与的终边关于原点对称;。 2.探究发现任意角的终边和角的终边与单位圆的交点坐标关于原点对称;。 3.探究发现任意角与的三角函数值的关系. (四)练习。 利用诱导公式(二),口答三角函数值。 喜悦之后让我们重新启航,接受新的挑战,引入新的问题. (五)问题变形。 高中数学教学设计例题篇十一1)。 2)掌握等比数列的定义理解等比数列的通项公式及其推导。 2、能力目标。 1)学会通过实例归纳概念。 2)通过学习等比数列的通项公式及其推导学会归纳假设。 3)提高数学建模的能力。 3、情感目标: 1)充分感受数列是反映现实生活的模型。 2)体会数学是来源于现实生活并应用于现实生活。 3)数学是丰富多彩的而不是枯燥无味的。 1、教学对象分析: 1)高中生已经有一定的学习能力,对各方面的知识有一定的基础,理解能力较强。并掌握了函数及个别特殊函数的性质及图像,如指数函数。之前也刚学习了等差数列,在学习这一章节时可联系以前所学的进行引导教学。 2)对归纳假设较弱,应加强这方面教学。 2、学习需要分析: 1.课前复习。 1)复习等差数列的概念及通向公式。 2)复习指数函数及其图像和性质。 2.情景导入。 高中数学教学设计例题篇十二在课堂教学中,教师若想提高教学效率,则需了解学生学情,然后在此基础上,紧扣教学内容,采用多种教学方法,以调动学生参与性,使其积极思考,把握科学学习方法,从而提高学习效率。 3.1分析学生学习情况。进入高中后,多数同学有了较为丰富的经验与知识,也具有了一定的抽象思维、分析概括、演绎推理能力,可通过观察而抽象出一定的数学知识。同时,学生思维也由逻辑思维发展为抽象思维,但需依靠一些感知材料。当然,也有部分同学的数学基础知识不牢固,对数学缺少学习兴趣。因此,在高中数列教学中,教师需要根据学生认知结构,考虑学生学习特点,以贴近学生生活实际的实例为出发点,注意适时引导与启发,加强学生思维能力训练,以适应学生学习心理发展特征。如教师可创设生活化的教学情境,引导学生由生活实际问题来学习数列知识,构建数学模型。 3.2分析教法与学法。当了解学生学习特点后,教师则需要灵活运用不同教学方法,以诱导学生主动参与课堂活动,展开积极思索。在课堂教学中,问题教学法是较为常用的,其主导思想为探究式教学。即教师精设系列问题,让学生在老师指导与启发下,自主分析与探究,从中获得结论,增强体验,得到知识,提高能力。如学习《等比数列前项和》时,教师可提出问题:某厂去年产值记作1,该厂计划于今后五年内每年产值比上一年增加10%,那么自今年起至第5年,该厂总产值是多少?该厂五年内的逐年产值有何特点?通过什么公式可求出总产值?这样,通过问题将学生带入等比数列前项和的探究学习中。其次,诱导思维法。通过这一方法,可凸显重点,帮助学生突破难点。同时,可发挥学生主观能动性,使其主动构建知识,培养创造精神。再次,分组讨论法。利用这一方法,可加强了师生、生生间的交流互动,碰撞思维,启迪智慧,使学生自主发现与解决问题。另外,还有讲练结合法。对于一些重难点知识,还需要教师详细见解,并借助典型例题,让学生巩固知识,掌握解题方法。此外,教师还需要对学生进行学法指导。如引导学生由实际问题对数组特征加以抽象,从而得到数列、等比与等差数列概念;如根据等比数列概念特征对等比数列通项公式加以推导等。在教学过程中,教师还可让能力较强的学生拓展思维方法,运用不同方法来推导等差或等比数列通项公式。同时,教师还需为学生留出充足的思考空间与时间,让学生大胆质疑、自主联想与探究。 总而言之,数列是高中数学知识体系中十分重要的一部分,因此教师在教学过程中应以新课改教学理念为基本依据,在教学过程中不断对教学方法进行探索和研究,并充分利用自身有力的教学特点根据不同学生的学习状况来对教学方法进行创新,从而使教学效果得到有效提高。 高中数学教学设计例题篇十三1.知识目标。 1)。 2)掌握等比数列的定义理解等比数列的通项公式及其推导。 2.能力目标。 1)学会通过实例归纳概念。 2)通过学习等比数列的通项公式及其推导学会归纳假设。 3、情感目标: 1)充分感受数列是反映现实生活的模型。 2)体会数学是来源于现实生活并应用于现实生活。 3)数学是丰富多彩的而不是枯燥无味的。 三、教学对象及学习需要分析。 1、教学对象分析: 1)高中生已经有一定的学习能力,对各方面的知识有一定的基础,理解能力较强。并掌握了函数及个别特殊函数的性质及图像,如指数函数。之前也刚学习了等差数列,在学习这一章节时可联系以前所学的进行引导教学。 2)对归纳假设较弱,应加强这方面教学。 2、学习需要分析: 四.教学策略选择与设计。 1.课前复习。 1)复习等差数列的概念及通向公式。 2)复习指数函数及其图像和性质。 2.情景导入。 高中数学教学设计例题篇十四1.把握菱形的判定。 2.通过运用菱形知识解决具体问题,提高分析能力和观察能力。 3.通过教具的演示培养学生的学习爱好。 4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想。 二、教法设计。 观察分析讨论相结合的方法。 三、重点·难点·疑点及解决办法。 1.教学重点:菱形的判定方法。 2.教学难点:菱形判定方法的综合应用。 四、课时安排。 1课时。 五、教具学具预备。 教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具。 六、师生互动活动设计。 教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨。 七、教学步骤。 复习提问。 1.叙述菱形的定义与性质。 2.菱形两邻角的比为1:2,较长对角线为,则对角线交点到一边距离为________. 引入新课。 师问:要判定一个四边形是不是菱形最基本的判定方法是什么方法? 生答:定义法。 此外还有别的两种判定方法,下面就来学习这两种方法。 讲解新课。 菱形判定定理1:四边都相等的四边形是菱形。 菱形判定定理2:对角钱互相垂直的平行四边形是菱形。图1。 分析判定1:首先证它是平行四边形,再证一组邻边相等,依定义即知为菱形。 分析判定2:。 师问:本定理有几个条件? 生答:两个。 师问:哪两个? 生答:(1)是平行四边形(2)两条对角线互相垂直。 师问:再需要什么条件可证该平行四边形是菱形? 生答:再证两邻边相等。 (由学生口述证实)。 证实时让学生注重线段垂直平分线在这里的应用, 师问:对角线互相垂直的四边形是菱形吗?为什么? 可画出图,显然对角线,但都不是菱形。 菱形常用的判定方法归纳为(学生讨论归纳后,由教师板书):。 注重:(2)与(4)的题设也是从四边形出发,和矩形一样它们的题没条件都包含有平行四边形的判定条件。 例4已知:的对角钱的垂直平分线与边、分别交于、,如图。 求证:四边形是菱形(按教材讲解). 总结、扩展。 1.小结: (1)归纳判定菱形的四种常用方法。 (2)说明矩形、菱形之间的区别与联系。 2.思考题:已知:如图4△中,平分,交于。 求证:四边形为菱形。 八、布置作业。 教材p159中9、10、11、13。 高中数学教学设计例题篇十五函数是高中数学的重要内容。高中数学对于函数的定义比较抽象,不易理解。高中数学相比初中数学来说更偏重于理解,所以,理解函数的定义是学好函数这一重要部分的基础。理解函数的定义关键在于理解对应关系。 学情分析。 初中数学对于函数的定义比较好理解,而在高中数学里函数的定义是从集合的角度来描述的。函数的三要素是定义域、对应关系、值域。函数本质是一种对应关系。直接讲定义时学生时难于理解的,尤其是对抽象的函数符号的理解。 教法分析。 现在的教学理念是以学生的学为中心的,要将学生的学寓于教学活动中去,让学生去体验,去感悟。本节课以学生熟知的消消乐游戏开始,由问题引出对应的概念,进而引导学生们去联想生活中的对应关系,比如健康码、一个萝卜一个坑儿等。这些生活中的现象之中就蕴含着函数的概念,从而自然引入函数的概念。 教学重难点。 学习结果评价。 能自己描述一个函数的例子。能判断是否为函数。 教学过程。 一、游戏导入。 学生体验消消乐游戏后,思考:两个图形怎么样才能消失。 二、想一想生活中的对应关系。 健康码、一个萝卜一个坑儿。 三、 再看一个例子。 旅行前了解当地的天气。 问题1:该气温变化图中有哪些变量? 问题2:变量之间是什么关系? 问题3:能否用集合语言来阐述它们之间的关系? 问题4:再了解函数的概念之后,你能否再举一些函数的例子? 问题5:我也来举一些例子,你们看看是不是函数关系? 四、课堂小结。 理解函数的概念关键在于理解其中的对应关系。 高中数学教学设计例题篇十六按照传统的教学理念来说,教学设计主要是指有效地运用相应的教学系统,有效地将教学与学习理论逐渐转变为有效地对教学参考资料和教学活动具体规划实现系统化的整个过程,其中教学内容、教学方法和教学效果问题在教学设计当中得到有效的解决.也可以说,所谓的教学设计就是将教学具体活动步骤制定成合理的教学方案,同时在教学结束后对教学过程进行相应的评估与总结,从而使教学效果得到提升,并实现对教学环境的优化工作. 高中数学教学设计例题篇十七解三角形及应用举例。 教学重难点。 解三角形及应用举例。 教学过程。 一。基础知识精讲。 掌握三角形有关的定理。 利用正弦定理,可以解决以下两类问题: (1)已知两角和任一边,求其他两边和一角; (2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);利用余弦定理,可以解决以下两类问题: (1)已知三边,求三角; (2)已知两边和它们的夹角,求第三边和其他两角。 掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形中的三角函数问题。 二。问题讨论。 思维点拨:已知两边和其中一边的对角解三角形问题,用正弦定理解,但需注意解的情况的讨论。 思维点拨::三角形中的三角变换,应灵活运用正、余弦定理,在求值时,要利用三角函数的有关性质。 例6:在某海滨城市附近海面有一台风,据检测,当前台风中心位于城市o(如图)的东偏南方向300km的海面p处,并以20km/h的速度向西偏北的方向移动,台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h的速度不断增加,问几小时后该城市开始受到台风的侵袭。 一。小结: 1、利用正弦定理,可以解决以下两类问题: (1)已知两角和任一边,求其他两边和一角; (2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角); 2、利用余弦定理,可以解决以下两类问题: (1)已知三边,求三角; (2)已知两边和它们的夹角,求第三边和其他两角。 3、边角互化是解三角形问题常用的手段。 二。作业:p80闯关训练。 高中数学教学设计例题篇十八(1)通过实物操作,增强学生的直观感知。 (2)能根据几何结构特征对空间物体进行分类。 (3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。 (4)会表示有关于几何体以及柱、锥、台的分类。 2.过程与方法。 (1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。 (2)让学生观察、讨论、归纳、概括所学的知识。 3.情感态度与价值观。 (1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。 (2)培养学生的空间想象能力和抽象括能力。 二、教学重点、难点。 重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。 难点:柱、锥、台、球的结构特征的概括。 三、教学用具。 (1)学法:观察、思考、交流、讨论、概括。 (2)实物模型、投影仪。 四、教学思路。 (一)创设情景,揭示课题。 1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。 2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。 (二)、研探新知。 1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。 3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。 (1)有两个面互相平行;。 (2)其余各面都是平行四边形;。 (3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。 4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。 6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。 7.让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。 8.引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。 9.教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。 (三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。 1.有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱。 2.棱柱的何两个平面都可以作为棱柱的底面吗? 3.课本p8,习题1.1a组第1题。 5.棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢? 四、巩固深化。 练习:课本p7练习1、2(1)(2)。 课本p8习题1.1第2、3、4题。 五、归纳整理。 由学生整理学习了哪些内容。 六、布置作业。 |