当前位置

: 时空阅读网实用范文几何学学后感 学习几何心得体会(优秀8篇)

几何学学后感 学习几何心得体会(优秀8篇)

匿名 2025-03-18 17:49:43 11 下载本文

人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。大家想知道怎么样才能写一篇比较优质的范文吗?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。

几何学学后感篇一

几何,一个涉及点、线、面、角等几何图形与性质的学科。对于许多人来说,几何似乎是一个抽象、难懂的学科。但是,在学习几何的过程中,我逐渐发现了一些心得和体会,愿意在这里分享给大家。

第二段:理论知识的掌握。

学习几何首先需要掌握的是一些理论知识,如线段相等、角度相等、垂直等概念。这些知识点是学习几何的基础,掌握它们对于学习几何的深入和理解很重要。在学习过程中,我会认真听讲、认真思考每个概念,还会拿起尺子画图,比较线段、角度的大小,让自己更加直观地理解这些概念。

第三段:图形的绘制。

几何学习不仅仅是理论知识,还有很多与图形的绘制相关的部分。绘制图形需要手眼协调和一定的技巧,需要掌握规范、精确的绘图方法。我会常常拿起尺子、直尺和画板,认真绘制题目中的图形,目的是为了训练自己的绘图技巧,以便能够更好地完成几何题目。

第四段:实际应用。

几何学习不仅仅是一些理论知识和绘图技巧,它也有很大程度上的实际应用。几何的应用广泛,包括建筑、地图、道路、机器设计等多种领域。在我的学习中,我始终注重联系实际,学习几何虽然是一项理论知识,但可以通过实际应用将其内化为自己的技能。

第五段:总结。

在学习几何的过程中,我总结出了自己的几个心得:首先,学习几何需要掌握基础的理论知识,不能忽略任何一个概念。其次,绘图技巧的训练是十分必要的,因为它可以帮助我们更好地理解和完成几何题目。最后,联系实际是学习几何的重要环节,可以帮助我们更好地掌握几何学科知识并将其运用到实际生活中。

细心的学习,注重细节的准备以及实际的应用都是我学习几何的心得。几何学科拓宽了我对世界的认识,也让我受益匪浅,希望我的心得能够对准备学习几何的同学有所帮助。

几何学学后感篇二

进修学校短期培训了《几何画板》软件的使用后,收获很大。几何画板是一个在数学领域里进行创造、探索和分析等方面有着广泛应用的软件系统,对于数学教学应用的价值较大。利用几何画板,我们可以构造交互式的数学模型,可用于从事形与数的基础研究,构造高级的、动态的复杂系统的插图。

通过这一期的学习,我了解了几何画板的有关知识,掌握了几何画板的一些基础应用,如一些基本图形的构造、图形的平移与旋转、的绘制等。

要对这节课完全理解,从原理上明白这节课的实质内容,再细化到如何去制作,才能简单明了的理解这节课,是在制作过程中的关键点。

这个单元的单元练习需要一些图形,我用了刚刚学会的几何画板画插图,画出了标准而美观的图画。其实通过这么短的学习是很不够的,目前对几何画板的掌握还不太熟练,还需要不断的学习运用,我相信通过自己的努力一定可更加熟练的掌握它,几何画板对我的帮助也会越来越大。

总之,《几何画板》是一个适用于教学和学习的工具软件平台。目前,各学校的电教化设施不断改进,多媒体设备已普及到班级,网络已深入课堂和家庭生活,我相信几何画板会被越来越多的数学老师掌握,它会深入课堂,深入学生。

几何学学后感篇三

几何是数学的分支之一,不仅是一门重要的学科,更是一种思维方式。在学习中,我深切认识到了几何学习的重要性,并积累了一些心得体会。

学习几何是一种抽象思维方式,需要我们不断分析、合并和比较图形。这种思维方式使我们具备更为敏锐的观察能力,从而有助于解决日常生活中的问题。例如,在购物时,可以利用几何的思想计算不同形状的包装容量,选择最合适的包装。

第三段:几何教学中的挑战。

学习几何的过程中,我遇到了一些挑战,例如难以理解定理与公式的推导过程。我发现解决这种困难的关键在于了解几何的基本概念。在解题时,一定要注意理解每一个步骤,而不是机械地套公式。

第四段:学习方式的改进。

我发现对于初学者来说,通过看教科书或听老师讲授几何知识,只能达到一个表面上的理解。要真正掌握几何知识,需要进行大量的练习。因此,我改变学习方式,将理论和实践相结合,积极寻找适合自己的解题方法,并勇于尝试不同的推导方式,来加深自己对几何知识的认识。

第五段:收获。

学习几何使我对问题的处理能力有了提高,我已经学会更好地理解和应用几何知识。随着几何的不断深入学习,我越来越有信心解决难题。几何学习不只是一种科目,而是一种思维方法。我相信,几何学习的经验会对我的未来学习和工作产生重大影响。

几何学学后感篇四

通过最近的选修内容的学习,使我充分认识到几何画板这一软件在教学中的应用价值,促使我迫不及待的进行自学这一软件,并应用于自己的教学实践,让我受益匪浅。我了解了几何画板的有关知识,掌握了几何画板的一些基础应用,如一些基本图形的构造、图形的平移与旋转、函数图象的绘制等。

联想到我日常教学中,比如圆和圆的位置关系、直线和圆的位置关系、二次函数图像的变换、三角形的全等和相似、还有一些常见题目的动画演示等,这些知识若通过几何画板演示,学生就能直接观察到它们的运动路径,使抽象的知识变得更加形象和直观,学生接受起来就很容易了。

同时,如果学好了几何画板,直接在课堂上操作,通过多媒体演示,既节省了时间,又提高了课堂效率。由此我体会到几何画板在数学教学中的用途如此之大,与我日常教学息息相关,我一定要认认真真地把它学好。同时准备动员我校全体数学教师进一步开发研究几何画板的使用,提高其使用技能下面是我学习的几点体会。

首先必需熟练运用好直线,线段,三角形,圆形,椭圆,垂线,二次函数等图形的绘画操作。在学习过程中,我也是遇到了不少的难题和困惑。我感觉单单用这个软件去制作课件并不难,难的是制作之前的构思巧妙与否,如何才能达到最佳效果。其次自己的自学能力毕竟有限,有许多地方都不明白,如果有老师给予一定的引导会更加好一些。

问题与解决是数学的心脏。提出问题并解决问题是数学发展的原动力。由于各种原因,今天的初中数学教材中,难以体现出“问题与解决”的韵味,也没有机会让中学生接触丰富的数学遗产。问题提出的唐突化,过度的公式化、形式化及解题的模式化,使数学失去了原有的魅力。至使部分学生错误地认为数学只是符号与公式的组合,难以激发他们学习数学的热情和兴趣。而《几何画板》它的精髓是:动态地保持了几何图形中内在的、恒定不变的几何关系及几何规律。它的最大特点是:按给定的数学规律和关系来制作图形(或图象、表格),从中观察事物的现象,通过类比和分析提出问题,还可进行实验来验证问题的真与假,从而发现恒定不变的几何规律,以及十分丰富的数学图象的内在美、对称美。可以驾驶《几何画板》这一叶扁舟,在数学发展的历史长河中漫游,兴之所至,或探踪寻源,或荡舟而过。

将《几何画板》引入数学课堂教学,有助于提高课堂效率,增大知识的覆盖面。能给学生以更多的操作机会,培养学生的动手动脑的能力。有助于培养学生敏捷思维和观察问题、分析问题、解决问题的能力。利用现代化的教育手段进行快速训练,有助于个性特长的培养和发挥。《几何画板》的引入会给广大数学教师指出一条捷径,一条新路。它仅仅要求数学老师略懂计算机知识,就可使用《几何画板》,并能用它来编制课件,它是以数学基础为根本,以动态几何的特殊形式来表达设计者的思想。

《几何画板》为数学教师使用现代化教学媒体提供了方便。教师可以自己动手根据不同的教材,不同的生源素质开发出不同的教学辅助软件。在课堂教学中可以很自由地掌握教学节奏以及教学深度与广度。

《几何画板》能够突出要点,有助于学生理解概念掌握方法;画板动态反映了概念及过程,能有效地突破难点;画板强大的交互性,让学生有更多的参与机会;画板通过多媒体实验实现了对普通实验的扩充,并通过对真实情景的再现和模拟,培养学生的探索、创造能力;画板操作过程的可重复性,可以有效地克服学生的遗忘。

几何画板的探究使用过程还很漫长,我将一如既往的进一步研究它,使用它,直至能过熟练的应用于自己的教育教学之中。

几何学学后感篇五

在我的中学生涯中,几何和概率一直是我认为最难的数学学科之一。然而,在这段时间中,我逐渐发现了学习几何和概率的有效方法,这些成功的方法不仅帮助我在考试中获得更好的成绩,而且帮助我提高数学思维能力,也帮助我在解决日常生活问题时更具有创造性。今天,我将分享我在学习几何和概率时的心得体会。

第一段:理解应用场景。

在学习几何和概率时,我发现最重要的是要理解应用场景。几何和概率往往需要应用到很多领域中,例如工程设计、物理学和数据分析等。当我能理解几何和概率在这些领域中的使用方法时,我就能够更好地理解如何应用它们解决相关的问题。例如,我可能需要计算物品的几何体积或者需要计算随机事件发生的概率,这些都需要应用到不同的几何和概率概念。

第二段:了解数学公式。

第二个重要的方面是理解数学公式。几何和概率通常有许多公式需要掌握,例如勾股定理、椭圆方程和贝叶斯定理等。当我能够了解这些公式的含义,并能够准确地应用它们时,我就能够更有效地解决与几何和概率相关的数学问题。在掌握这些公式时,我会阅读教科书和其他相关的参考资料,并进行刻意练习来巩固学习成果。

第三段:培养图像思维。

第三个重要的方面是培养几何和概率的图像思维能力。这些学科往往需要我们想象出某种形状或者场景,并从中推导出正确的答案。当我能够将几何和概率的概念转化为形象化的图像时,我就能够更好地理解和记忆这些概念。在这方面,我常常通过练习绘制几何图形,来加深对几何概念的理解。

第四段:习惯性思考。

第四个重要的提高是习惯性思考。几何和概率往往需要运用各种复杂的数学公式和思维技巧。如果缺乏思维训练,这些技巧就很难自然形成习惯。因此,我认为最重要的是在练习过程中逐渐习惯性思考,使自己具有良好的数学思维模式。在实践中,我喜欢运用“自己的语言重新演述问题”来加深理解,这种方法可以帮助我更好地理解问题和找到解决问题的方法。

第五段:灵活思考。

最后,灵活思考也是非常重要的。在面对复杂的几何和概率问题时,无法简单地遵循固定的模式去解决。相反,我们需要灵活运用所学的技巧和知识来解决问题。当我面对新问题时,尽管首先思考一下以前学过的相关知识,但是如果无法回答问题,我就会开始思考像变换变形、结合条件概率和推理逻辑等更高级的技巧。在这样的过程中,我可以培养创新能力,学习到更多的数学策略,也更好地理解数学的本质。

总之,学习几何和概率是一项重要的任务。通过了解应用场景、理解数学公式、培养图像思维能力、习惯性思考和灵活思考,我能够提高自己的几何和概率技能和思维能力。这些收益不止于数学教育,也能帮助我解决各种日常生活中的问题。无论是在学校还是在日常生活中,这些技能都会给我带来无数的好处。

几何学学后感篇六

几何在五年级的课本中有很重要的地位,它是最基础的、又是最抽象的。学生对其学习得好坏直接影响着对初中有关知识的理解。在学习中单凭教师的讲解是不够的,还要让他们在运用中进一步理解。下面谈一谈几何教学的几点体会。

几何课单凭教师手中的几件教具,是解决不丁问题的,这样不能充分调动学生的多种感官。例如,在教学长方体和正方体时。我让学生提前准备了火柴盒、积木、木块等物体,在教学时,我出示了手中的火柴盒,提问学生有几个面,学生通过观察,很快就了解清楚了几个面,几个顶点,几条棱,并且增加了教学的趣味性。

五年级学生虽属高年级学生,但他们的抽象思维能力还很差,教学时应注意循序渐进。如在认识长方体的教学过程中,先出示长方形,再结合实物讲出长方形在实物中所处的位置与关系,这样学生的头脑中留下了长方体的印象。

几何概念是抽象的,通过实物演示,能够加深理解。例如在讲“棱”的定义时,我运用了长方体模型,剥开它的面,利月黄色的面与红色的面相交的边来讲解演示,然后让学生自己操作,并要求学生在理解的基础上记熟“棱”这个概念。

区别形体例如,在讲完长方体与正方体的特征之后,让学生通过观察长方体和正方体,来得出正方体的长宽高都相等、长方体4条棱都相等的概念。

学生的动手、动脑、动口,在几何课上占有很重要的地位。例如,在讲长方体与正方体的认识这节课上,通过学生观察火柴盒“动脑想”,通过量一量长方体相交于一点的三条棱长来亲自做,通过区别长方体和正方体,让学生说一说区别与联系,这样,学生经过动脑、动手、动口,很容易地记住了长、正方体的特征与区别。

几何课上教师的语言要简洁明了,具有严密的逻辑性。由于小学阶段学生接触的几何术语太少,因此,教师应注意说话的准确与易懂。

总之,几何知识的教学方法,需要每一位教师,努力研究探索,这只是本人的一点初浅的体会。

强化训练,提高学生的思维能力从低年级的数学知识来看,始终离不开思维能力的培养,让学生在学习中提高数学的思维能力,是低年级数学教学中切实可行的方法。

对于一个低年级的学生来说,他们在教师的指导下,只能动手摆摆、算算,不会运用思维过程,这就严重地制约了思维能力的提高。针对这一实际,我让学生在动手同时进行动嘴说的训练,逐步提高学生数学的思维能力。

(一)创造条件,让全班学生都参加到说的训练中去。给学生创设了一个轻松、愉快的课堂气氛。我根据教学的难易程度,让每位学生都参入各项训练中去。为保证大面积丰收,我采用了动手摆再动嘴说、优生带差生、学生自己说和同桌互相说、当众交流说等形式。

(二)引导学生主动质疑,说出自己学习中存在的问题。做到耐心引导,让学生完整地叙述思维过程,提出自己不明白的问题,组织学生针对存在的问题展开讨论,启发多动脑筋,各说各的理,教师则始终用问题来牵动学生。例如:教11-7=?时,让学生这样想:9加()得11,所以11减9等于。这样反复训练,使学生学而有思,思有所感,达到预期目的。

(三)对学生说的结果及时给予鼓励性的评价。对于学生的回答,给予一定的鼓励和评价,来鼓励他们说的积极性,对后进生更是如此,即使回答不全面和不很正确,也尽量找到肯定之处大力表扬和鼓励,以增强说的信心。

(四)说算理算法及应用题。教学中首先引导学生参入教学活动中去,使学生在说中弄清算理,学会算法,理清解题思路和试题,尽量让学生说出每题的条件及间题,说明算式意义,说清运算步骤。

(五)在学生认真读应用题的基础上,还可以让学生用生。

活语言叙述应用题,再把文字题抽象为应用的算式,最后,说算式,说算理,说算法,说应用题的解答方法。经常进行这种说的训练,能使学生把试题半图画半文字题以及应用题连为一题,有利于训练学生正确地分析应用题的数量关系,还能促进口头语言的协调发展,使学生在说中提高思维能力。

几何学学后感篇七

几何学与概率论作为数学两个不同的分支,在实际应用中经常相互关联。几何学中的概率问题和概率论中的几何应用,对我们在解决实际问题时起到了很大的帮助。我在学习几何与概率的知识时,发现它们能够引导我们实现更深入的思考和更好的解决方案。

第二段:几何问题中的概率应用。

在几何学中,我们可以通过概率论的知识来解决一些难题。例如,在解决航空工程或建筑工程中,我们经常需要考虑高度和距离。这时,我们可以应用概率公式来计算出这些值,以帮助我们更好的进行决策。此外,在解决地图绘制问题中也需要应用概率论,例如确定地图上路线的最短路径等问题。

第三段:概率问题中的几何应用。

在概率论中,也需要应用到几何学。例如,我们经常需要用到概率分布函数来描述一些事件发生的概率,而这个函数的作用就是表示不同可能性的区域(几何区域)在函数图像上各自所对应的面积。此外,利用概率推理时我们需要考虑数据空间的几何特性,以构建合理的概率模型,进而计算我们感兴趣的事件发生的概率。

第四段:几何与概率的联合应用。

几何与概率的联合应用十分广泛,例如在机器学习中,我们需要用到概率来预测结果。这时,我们需要首先结合样本空间的几何结构来构建概率模型。随后,我们就可以应用几何学中的理论,例如欧式距离度量和向量空间距离度量等,来计算新的样本与识别类别之间的距离,从而实现分类的目的。

第五段:数学学科的整合与进一步思考。

此外,几何与概率的联合应用,也带给我特殊的感受,让我得以对学科知识的整体和扩展有更深入的理解。在实践中,我们同样能够发现数学轻松地囊括多个不同的学科,几何和概率的联系只是时空机械样例而已。学习几何和概率的过程中也唤起我对其他数学学科进一步学习和思考的渴望,更好地突破个人认识和学习的局限。

综上所述,几何和概率的联系除了在学科上,实际应用环节也十分的紧密。通过对几何和概率的整合学习,让我对数字的理解和感知有越来越深的了解,也对其他数学学科的学习和探索提起了进一步的兴趣和思考。

几何学学后感篇八

《几何原本》是古希腊数学家欧几里得的一部不朽之作,集整个古希腊数学的成果和精神于一身。既是数学巨著,也是哲学巨著,并且第一次完成了人类对空间的认识。该书自问世之日起,在长达两千多年的时间里,历经多次翻译和修订,自1482年第一个印刷本出版,至今已有一千多种不同版本。

除《圣经》以外,没有任何其他著作,其研究、使用和传播之广泛能够和《几何原本》相比。汉语的最早译本是由意大利传教士利玛窦和明代科学家徐光启于1607年合作完成的,但他们只译出了前六卷。证实这个残本断定了中国现代数学的基本术语,诸如三角形、角、直角等。日本、印度等东方国家皆使用中国译法,沿用至今。近百年来,虽然大陆的中学课本必提及这一伟大著作,但对中国读者来说,却无缘一睹它的全貌,纳入家庭藏书更是妄想。

徐光启在译此作时,对该书有极高的评价,他说:“能精此书者,无一事不可精;好学此书者,无一事不科学。”现代科学的奠基者爱因斯坦更是认为:如果欧几里得未能激发起你少年时代的科学热情,那你肯定不会是一个天才的科学家。由此可见,《几何原本》对人们理性推演能力的影响,即对人的科学思想的影响是何等巨大。在高等数学中,有正交的概念,最早的概念起源应该是毕达哥拉斯定理,我们称之为勾股定理,只是勾3股4弦5是一种特例,而毕氏定理对任意直角三角形都成立。并由毕氏定理,发现了无理数根号2。在数学方法上初步涉及演绎法,又在证明命题时用了归谬法(即反证法)。可能由于受丢番图(diophantus)对一个平方数分成两个平方数整数解的启发,350多年前,法国数学家费马提出了著名的费马大定理,吸引了历代数学家为它的证明付出了巨大的努力,有力地推动了数论用至整个数学的进步。1994年,这一旷世难题被英国数学家安德鲁威乐斯解决。

多少年来,千千万万人(著名的有牛顿(newton)、阿基米德(archimedes)等)通过欧几里得几何的学习受到了逻辑的训练,从而迈入科学的殿堂。

猜你喜欢