当前位置

: 时空阅读网实用范文2025年数学知识点总结小学 高考数学知识点总结(优秀12篇)

2025年数学知识点总结小学 高考数学知识点总结(优秀12篇)

匿名 2025-03-03 04:08:42 4 下载本文

写总结最重要的一点就是要把每一个要点写清楚,写明白,实事求是。怎样写总结才更能起到其作用呢?总结应该怎么写呢?以下是小编为大家收集的总结范文,仅供参考,大家一起来看看吧。

数学知识点总结小学篇一

三忌“好高骛远,忽视双基”

很多同学都知道好高务远就是眼高手低、不自量力的代名词,但却不知道什么是好高骛远。

有的同学由于自己觉得成绩很好,所以,总认为基础的东西,太简单,研究双基是浪费时间;有的同学对自己的定位较高,认为自己研究的应该是那些高于其它同学的,别人觉得有困难的东西;有的同学总是嫌老师讲得太简单或者太慢,甚至有的同学成绩不怎么样,也瞧不起基础的东西。其实,这些都是好高骛远。

最深刻的道理,往往存在于最简单的事实之中。一切高楼大厦都是平地而起的,一切高深的理论,都是由基础理论总结出来的。同学们可以仔细地分析老师讲的课,无论是多难的题目,最后总是深入浅出,归结到课本上的知识点,无论是多简单的题目,总能指出其中所蕴藏的科学道理,而大多数同学,只听到老师讲的是题目,常常认为此题已懂,不需要再听,而忽略了老师阐述“来自基础,回归基础”的道理的关键地方。所以大家一定要重视双基,千万别好高务远。

四忌“敷衍了事,得过且过”

以下是对某校届高三300名同学关于作业问题的两项调查:(数值为人数比例:做到的/总人数)。

你做作业是为了什么?

检测自己究竟学会了没有占91/30.33%。

因为老师要检查占143/47.67%。

怕被家长、老师批评的占38/12.67%。

说不清什么原因占28/9.33%。

你的作业是怎样完成的?

复习,再联系课上内容独立完成占55/18.33%。

数学知识点总结小学篇二

任何正整数都是0的约数。

4的正约数有:1、2、4。

6的正约数有:1、2、3、6。

10的正约数有:1、2、5、10。

12的正约数有:1、2、3、4、6、12。

15的正约数有:1、3、5、15。

18的正约数有:1、2、3、6、9、18。

20的正约数有:1、2、4、5、10、20。

注意:一个数的约数必然包括1及其本身。

2、约数的个数怎么求。

要用到约数个数定理。

需要指出来的是,a1,a2,a3……都是a的质因数。r1,r2,r3……是a1,a2,a3……的指数。

比如,360=2^3_3^2_5(^是次方的意思)。

所以个数是(3+1)_(2+1)_(1+1)=24个。

数学知识点总结小学篇三

1、静态的观点有两个平行的平面,其他的面是曲面;动态的观点:矩形绕其一边旋转形成的面围成的旋转体,象这样的旋转体称为圆柱。

2、定义:以矩形的一边所在直线为旋转轴,其余各边旋转而形成的的曲面所围成的旋转体叫做圆柱,旋转轴叫圆柱的轴;垂直于旋转轴的边旋转而成的圆面叫做圆柱的底面;平行于圆柱轴的边旋转而成的面叫圆柱的侧面,圆柱的侧面又称圆柱的面。无论转到什么位置,不垂直于轴的边都叫圆柱侧面的母线。

表示:圆柱用表示轴的字母表示。

规定:圆柱和棱柱统称为柱体。

3、静态观点:有一平面,其他的面是曲面;动态的观点:直角三角形绕其一直角旋转形成的面围成的旋转体,像这样的旋转体称为圆锥。

4、定义:以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转而形成的面所围成的旋转体叫做圆锥。旋转轴叫圆锥的轴;垂直于旋转轴的边旋转而成的圆面成为圆锥的底面;不垂直于旋转轴的边旋转而成的曲面叫圆锥的侧面,圆锥的侧面又称圆锥的面,无论旋转到什么位置,这条边都叫做圆锥侧面的母线。

表示:圆锥用表示轴的字母表示。

规定:圆锥和棱锥统称为锥体。

5、定义:以半直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆台。还可以看成用平行于圆锥底面的平面截这个圆锥,截面于底面之间的部分。旋转轴叫圆台的轴。垂直于旋转轴的边旋转而形成的圆面称为圆台的底面;不垂直于旋转轴的边旋转而成的曲面叫做圆台的侧面,无论转到什么位置,这条边都叫圆台侧面的母线。

表示:圆台用表示轴的字母表示。

规定:圆台和棱台统称为台体。

6、定义:以半圆的直径所在的直线为旋转轴,将半圆旋转一周所形成的曲面称为球面,球面所围成的旋转体称为球体,简称为球。半圆的圆心称为球心,连接球面上任意一点与球心的线段称为球的半径,连接球面上两点并且过球心的线段称为球的直径。

表示:用表示球心的字母表示。

简单组合体的结构:

1、`由简单几何体组合而成的几何体叫简单组合体。现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成。如教材图1.1-11的前两个图形,他们是多面体与多面体的组合体;1.1-11的后两个图形,他们是由一个多面体从中截去一个或多个多面体得到的组合体。

2、常见的组合体有三种:多面体与多面体的组合;多面体与旋转体的组合;旋转体与旋转体的组合。其基本形式实质上有两种:一种是由简单几何体拼接而成的简单组合体;另一种是由简单简单几何体截去或挖去一部分而成的简单组合体。

将本文的word文档下载到电脑,方便收藏和打印。

数学知识点总结小学篇四

相似比:相似多边形对应边的比值。

2、相似三角形。

判定:

平行于三角形一边的直线和其它两边相交,所构成的三角形和原三角形相似;

如果两个三角形的三组对应边的比相等,那么这两个三角形相似;

如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么两个三角形相似;

如果一个三角形的两个角与另一个三角形的两个角对应相等,那么两个三角形相似。

3相似三角形的周长和面积。

相似三角形(多边形)的周长的比等于相似比;

相似三角形(多边形)的面积的比等于相似比的平方。

4位似。

位似图形:两个多边形相似,而且对应顶点的连线相交于一点,对应边互相平行,这样的两个图形叫位似图形,相交的点叫位似中心。

数学知识点总结小学篇五

函数的定义、函数的表示法、分段函数、隐函数。

(2)函数的性质。

单调性、奇偶性、有界性、周期性。

(3)反函数。

反函数的定义、反函数的图像。

(4)基本初等函数。

幂函数、指数函数、对数函数、三角函数、反三角函数。

(5)函数的四则运算与复合运算。

(6)初等函数。

2、要求。

(1)理解函数的概念,会求函数的表达式、定义域及函数值,会求分段函数的定义域、函数值,会作出简单的分段函数的图像。

(2)理解函数的单调性、奇偶性、有界性和周期性。

(3)了解函数与其反函数之间的关系(定义域、值域、图像),会求单调函数的反函数。

(4)熟练掌握函数的四则运算与复合运算。

(5)掌握基本初等函数的性质及其图像。

(6)了解初等函数的概念。

(7)会建立简单实际问题的函数关系式。

数学知识点总结小学篇六

(2)线面垂直的判定定理1:如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直。

(3)线面垂直的判定定理2:如果在两条平行直线中有一条垂直于平面,那么另一条也垂直于这个平面。

(4)面面垂直的性质:如果两个平面互相垂直那么在一个平面内垂直于它们交线的直线垂直于另一个平面。

(5)若一条直线垂直于两平行平面中的一个平面,则这条直线必垂直于另一个平面。

判定两个平面垂直的方法:(1)利用定义。

(2)判定定理:如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直。

夹在两个平行平面之间的平行线段相等。

经过平面外一点有且仅有一个平面与已知平面平行。

两条直线被三个平行平面所截,截得的对应线段成比例。

将本文的word文档下载到电脑,方便收藏和打印。

数学知识点总结小学篇七

【内容解读】了解向量的实际背景,掌握向量、零向量、平行向量、共线向量、单位向量、相等向量等概念,理解向量的几何表示,掌握平面向量的基本定理。

注意对向量概念的理解,向量是可以自由移动的,平移后所得向量与原向量相同;两个向量无法比较大小,它们的模可比较大小。

【内容解读】向量的运算要求掌握向量的加减法运算,会用平行四边形法则、三角形法则进行向量的加减运算;掌握实数与向量的积运算,理解两个向量共线的含义,会判断两个向量的平行关系;掌握向量的数量积的运算,体会平面向量的数量积与向量投影的关系,并理解其几何意义,掌握数量积的坐标表达式,会进行平面向量积的运算,能运用数量积表示两个向量的夹角,会用向量积判断两个平面向量的垂直关系。

【命题规律】命题形式主要以选择、填空题型出现,难度不大,考查重点为模和向量夹角的定义、夹角公式、向量的坐标运算,有时也会与其它内容相结合。

【内容解读】掌握线段的定比分点和中点坐标公式,并能熟练应用,求点分有向线段所成比时,可借助图形来帮助理解。

【命题规律】重点考查定义和公式,主要以选择题或填空题型出现,难度一般。由于向量应用的广泛性,经常也会与三角函数,解析几何一并考查,若出现在解答题中,难度以中档题为主,偶尔也以难度略高的题目。

【内容解读】向量与三角函数的综合问题是高考经常出现的问题,考查了向量的知识,三角函数的知识,达到了高考中试题的覆盖面的要求。

【命题规律】命题以三角函数作为坐标,以向量的坐标运算或向量与解三角形的内容相结合,也有向量与三角函数图象平移结合的问题,属中档偏易题。

【内容解读】平面向量与函数交汇的问题,主要是向量与二次函数结合的问题为主,要注意自变量的取值范围。

【命题规律】命题多以解答题为主,属中档题。

【内容解读】向量的坐标表示实际上就是向量的代数表示.在引入向量的坐标表示后,使向量之间的运算代数化,这样就可以将“形”和“数”紧密地结合在一起.因此,许多平面几何问题中较难解决的问题,都可以转化为大家熟悉的代数运算的论证.也就是把平面几何图形放到适当的坐标系中,赋予几何图形有关点与平面向量具体的坐标,这样将有关平面几何问题转化为相应的代数运算和向量运算,从而使问题得到解决.

【命题规律】命题多以解答题为主,属中等偏难的试题。

戴氏航天学校老师总结加法与减法的代数运算:

(1)若a=(x1,y1),b=(x2,y2)则ab=(x1+x2,y1+y2).

向量加法与减法的几何表示:平行四边形法则、三角形法则。

两个向量共线的充要条件:

(1)向量b与非零向量共线的充要条件是有且仅有一个实数,使得b=.

(2)若=(),b=()则‖b.

数学知识点总结小学篇八

通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。

数学知识点总结小学篇九

整数零负整数有限小数或无限循环小数。

正分数。

分数。

负分数小数。

1.正无理数。

无理数无限不循环小数。

负无理数。

2、数轴:规定了(画数轴时,要注童上述规定的三要素缺一个不可),

实数与数轴上的点是一一对应的。

数轴上任一点对应的数总大于这个点左边的点对应的数。

3、相反数与倒数;?a(a?0)4、绝对值?|a|??0(a?0)。

5、近似数与有效数字;??a(a?0)?

6、科学记数法。

7、平方根与算术平方根、立方根;

8、非负数的性质:若几个非负数之和为零,则这几个数都等于零。

1.无理数:无限不循环小数。

算术平方根定义如果一个非负数x的平方等于a,即x2?a。

那么这个非负数x就叫做a的算术平方根,记为a,

算术平方根为非负数a?0。

叫做a的平方根,记为?a?

正数的立方根是正数???立方根?负数的立方根是负数????0的立方根是0???

定义:如果一个数x的立方等于a,即x3?a,那么这个数x?

就叫做a的立方根,记为3a.?

概念有理数和无理数统称实数。

绝对值、相反数、倒数的意义同有理数。

实数与数轴上的点是一一对应。

实数的运算法则、运算规律与有理数的运算法则?

运算规律相同。

数学知识点总结小学篇十

(2)导数的四则运算。

(3)复合函数的导数。

设在点x处可导,y=在点处可导,则复合函数在点x处可导,且即。

1、数列的极限:

粗略地说,就是当数列的项n无限增大时,数列的项无限趋向于a,这就是数列极限的描述性定义。记作:=a。如:

2、函数的极限:

1、在处的导数。

2、在的导数。

3、函数在点处的导数的几何意义:

函数在点处的导数是曲线在处的切线的斜率,

即k=,相应的切线方程是。

注:函数的导函数在时的函数值,就是在处的`导数。

例、若=2,则=()a—1b—2c1d。

(一)曲线的切线。

函数y=f(x)在点处的导数,就是曲线y=(x)在点处的切线的斜率。由此,可以利用导数求曲线的切线方程。具体求法分两步:

(1)求出函数y=f(x)在点处的导数,即曲线y=f(x)。

(2)在已知切点坐标和切线斜率的条件下,求得切线方程为x。

数学知识点总结小学篇十一

有一个角是直角的平行四边形叫做矩形。

(1)具有平行四边形的一切性质。

(2)矩形的四个角都是直角。

(3)矩形的对角线相等。

(4)矩形是轴对称图形。

(1)定义:有一个角是直角的平行四边形是矩形。

(2)定理1:有三个角是直角的四边形是矩形。

(3)定理2:对角线相等的平行四边形是矩形。

s矩形=长×宽=ab。

1、正方形的概念。

有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

2、正方形的性质。

(1)具有平行四边形、矩形、菱形的一切性质;

(2)正方形的四个角都是直角,四条边都相等;

(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角;

(4)正方形是轴对称图形,有4条对称轴;

(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。

3、正方形的判定。

(1)判定一个四边形是正方形的主要依据是定义,途径有两种:

先证它是矩形,再证有一组邻边相等。

先证它是菱形,再证有一个角是直角。

(2)判定一个四边形为正方形的一般顺序如下:

先证明它是平行四边形;

再证明它是菱形(或矩形);

最后证明它是矩形(或菱形)。

数学知识点总结小学篇十二

1、平面的基本性质:

公理1如果一条直线的两点在一个平面内,那么这条直线在这个平面内;

公理2过不在一条直线上的三点,有且只有一个平面;

公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

2、空间点、直线、平面之间的位置关系:

直线与直线—平行、相交、异面;

直线与平面—平行、相交、直线属于该平面(线在面内,最易忽视);

平面与平面—平行、相交。

3、异面直线:

平面外一点a与平面一点b的连线和平面内不经过点b的直线是异面直线(判定);

所成的角范围(0,90)度(平移法,作平行线相交得到夹角或其补角);

两条直线不是异面直线,则两条直线平行或相交(反证);

异面直线不同在任何一个平面内。

求异面直线所成的角:平移法,把异面问题转化为相交直线的夹角

1、直线与平面平行(核心)

定义:直线和平面没有公共点

判定:不在一个平面内的一条直线和平面内的一条直线平行,则该直线平行于此平面(由线线平行得出)

2、平面与平面平行

定义:两个平面没有公共点

判定:一个平面内有两条相交直线平行于另一个平面,则这两个平面平行

性质:两个平面平行,则其中一个平面内的直线平行于另一个平面;如果两个平行平面同时与第三个平面相交,那么它们的交线平行。

3、常利用三角形中位线、平行四边形对边、已知直线作一平面找其交线

1、直线与平面垂直

定义:直线与平面内任意一条直线都垂直

判定:如果一条直线与一个平面内的两条相交的直线都垂直,则该直线与此平面垂直

性质:垂直于同一直线的两平面平行

推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条也垂直于这个平面

2、平面与平面垂直

定义:两个平面所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线所成的角)

判定:一个平面过另一个平面的垂线,则这两个平面垂直

性质:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直

猜你喜欢