2025年高一数学教案集合的概念 高一数学教案(大全16篇)
作为一位杰出的教职工,总归要编写教案,教案是教学活动的总的组织纲领和行动方案。那么问题来了,教案应该怎么写?以下是小编收集整理的教案范文,仅供参考,希望能够帮助到大家。 高一数学教案集合的概念篇一1.了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法. (1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念. (2)能从数和形两个角度认识单调性和奇偶性. (3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程. 2.通过函数单调性的证明,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从特殊到一般的数学思想. 3.通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度. (1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系. (2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像. (1)本节教学的重点是函数的单调性,奇偶性概念的形成与认识.教学的难点是领悟函数单调性, 奇偶性的本质,掌握单调性的证明. (2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它.这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫.单调性的证明是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证明,也没有意识到它的重要性,所以单调性的证明自然就是教学中的难点. (1)函数单调性概念引入时,可以先从学生熟悉的一次函数,,二次函数.反比例函数图象出发,回忆图象的增减性,从这点感性认识出发,通过问题逐步向抽象的定义靠拢.如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来.在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的认识就可以融入其中,将概念的形成与认识结合起来. (2)函数单调性证明的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,特别是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律. 函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来.经历了这样的过程,再得到等式时,就比较容易体会它代表的是无数多个等式,是个恒等式.关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件. 高一数学教案集合的概念篇二(1)掌握斜二测画法画水平设置的平面图形的直观图。 (2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。 2.过程与方法。 学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。 3.情感态度与价值观。 (1)提高空间想象力与直观感受。 (2)体会对比在学习中的作用。 (3)感受几何作图在生产活动中的应用。 高一数学教案集合的概念篇三1.阅读课本练习止。 2.回答问题: (1)课本内容分成几个层次?每个层次的中心内容是什么? (2)层次间的联系是什么? (3)对数函数的定义是什么? (4)对数函数与指数函数有什么关系? 3.完成练习。 4.小结。 二、方法指导。 1.在学习对数函数时,同学们应从熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质。 2.本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开,同学们在学习时应该把两个函数进行类比,通过互为反函数的两个函数的关系由已知函数研究未知函数的性质。 一、提问题。 1.对数函数的自变量和函数分别在指数函数中是什么? 2.两个函数如果互为反函数,则他们的值域,定义域有什么关系? 3.是否所有的函数都有反函数?试举例说明。 二、变题目。 1.试求下列函数的反函数: (1);(2);(3);(4)。 2.求下列函数的定义域:。 (1);(2);(3)。 3.已知则=;的定义域为。 1.对数函数的有关概念。 (1)把函数叫做对数函数,叫做对数函数的底数。 (2)以10为底数的对数函数为常用对数函数。 (3)以无理数为底数的对数函数为自然对数函数。 2.反函数的概念。 在指数函数中,是自变量,是的函数,其定义域是,值域是;在对数函数中,是自变量,是的函数,其定义域是,值域是,像这样的两个函数叫做互为反函数。 3.与对数函数有关的定义域的求法: 4.举例说明如何求反函数。 一、课外作业:习题3-5a组1,2,3,b组1, 二、课外思考: 1.求定义域: 2.求使函数的函数值恒为负值的的取值范围。 高一数学教案集合的概念篇四掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。 向量的性质及相关知识的综合应用。 (一)主要知识: 1、掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。 (二)例题分析:略。 四、小结: 1、进一步熟练有关向量的运算和证明;能运用解三角形的`知识解决有关应用问题, 2、渗透数学建模的思想,切实培养分析和解决问题的能力。 高一数学教案集合的概念篇五1、使学生理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。 (1)理解数列是按一定顺序排成的一列数,其每一项是由其项数确定的。 (2)了解数列的各种表示方法,理解通项公式是数列第项与项数的关系式,能根据通项公式写出数列的前几项,并能根据给出的一个数列的前几项写出该数列的一个通项公式。 (3)已知一个数列的递推公式及前若干项,便确定了数列,能用代入法写出数列的`前几项。 2、通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力。 3、通过由求的过程,培养学生严谨的科学态度及良好的思维习惯。 (1)为激发学生学习数列的兴趣,体会数列知识在实际生活中的作用,可由实际问题引入,从中抽象出数列要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还有物品堆放个数的计算等。 (2)数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系。在教学中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列。函数表示法有列表法、图象法、解析式法,类似地,数列就有列举法、图示法、通项公式法。由于数列的自变量为正整数,于是就有可能相邻的两项(或几项)有关系,从而数列就有其特殊的表示法——递推公式法。 (3)由数列的通项公式写出数列的前几项是简单的代入法,教师应精心设计例题,使这一例题为写通项公式作一些准备,尤其是对程度差的学生,应多举几个例子,让学生观察归纳通项公式与各项的结构关系,尽量为写通项公式提供帮助。 (4)由数列的前几项写出数列的一个通项公式使学生学习中的一个难点,要帮助学生分析各项中的结构特征(整式,分式,递增,递减,摆动等),由学生归纳一些规律性的结论,如正负相间用来调整等。如果学生一时不能写出通项公式,可让学生依据前几项的规律,猜想该数列的下一项或下几项的值,以便寻求项与项数的关系。 (5)对每个数列都有求和问题,所以在本节课应补充数列前项和的概念,用表示的问题是重点问题,可先提出一个具体问题让学生分析与的关系,再由特殊到一般,研究其一般规律,并给出严格的推理证明(强调的表达式是分段的);之后再到特殊问题的解决,举例时要兼顾结果可合并及不可合并的情况。 (6)给出一些简单数列的通项公式,可以求其项或最小项,又是函数思想与方法的体现,对程度好的学生应提出这一问题,学生运用函数知识是可以解决的。 高一数学教案集合的概念篇六通过一系列的猜想得出德.摩根律,但是这个结论仅仅是猜想,数学是一门科学,所以需要论证它的正确性,因此本节通过剖析维恩图的四部分来验证猜想的正确性,并对德摩根律进行简单的应用,因此我们制作了本微课. 一、片头。 内容:现在让我们一起来学习《集合的运算——自己探索也能发现的‘数学规律(第二讲)》。 二、正文讲解。 1.引入:牛顿曾说过:“没有大胆的猜测,就做不出伟大的发现。” 那么,这个规律是偶然的.,还是一个恒等式呢? 2.规律的验证:。 3.抽象概括:通过我们的观察和验证,我们发现这个规律是一个恒等式。 而这个规律就是180年前的英国数学家德摩根发现的。 为了纪念他,我们将它称为德摩根律。 原来我们通过自己的探索也能发现这么伟大的数学规律。 三、结尾。 通过这在道题的解答,我们发现德摩根律为解答集合运算问题提供了更为简便的方法。 希望你在今后的学习中,勇于探索,发现更多有趣的规律。 高一数学教案集合的概念篇七概念抽象、符号术语多是集合单元的一个显著特点,例如交集、并集、补集的概念及其表示方法,集合与元素的关系及其表示方法,集合与集合的关系及其表示方法,子集、真子集和集合相等的定义等等。这些概念、关系和表示方法,都可以作为求解集合问题的依据、出发点甚至是突破口。因此,要想学好集合的内容,就必须在准确地把握集合的概念,熟练地运用集合与集合的关系解决具体问题上下功夫。 二、注意弄清集合元素的性质,学会运用元素分析法审视集合的有关问题。 众所周知,集合可以看成是一些对象的全体,其中的每一个对象叫做这个集合的元素。集合中的元素具有“三性”: (1)、确定性:集合中的元素应该是确定的,不能模棱两可。 (2)、互异性:集合中的元素应该是互不相同的,相同的元素在集合中只能算作一个。 (3)、无序性:集合中的元素是无次序关系的。 集合的关系、集合的运算等等都是从元素的角度予以定义的。因此,求解集合问题时,抓住元素的特征进行分析,就相当于牵牛抓住了牛鼻子。 三、体会集合问题中蕴含的数学思想方法,掌握解决集合问题的基本规律。 布鲁纳说过,掌握数学思想可使得数学更容易理解和记忆,领会数学思想是通向迁移大道的“光明之路”。集合单元中,含有丰富的数学思想内容,例如数形结合的思想、分类讨论的思想、等价转化的思想、正难则反的思想等等,显得十分活跃。在学习过程中,注意对这些数学思想进行挖掘、提炼和渗透,不仅可以有效地掌握集合的知识,驾驭集合问题的求解,而且对于开发智力、培养能力、优化思维品质,都具有十分重要的意义。 四、重视空集的特殊性,防止由于忽视空集这一特殊情况导致的解题失误。 空集是一个十分重要的特殊集合,它具备“空集虽空,但空有所为”的功能。在解题的过程中,要时刻注意有无可能存在空集的情况,否则极易导致解题失误。这一点,必须引起我们的高度重视。 一、转变观念,化被动学习为主动学习。 初中阶段,特别是初中三年级,老师会通过大量的练习,学生自己也会查找很多资料,这样就会把自己的数学成绩得到明显的提高,这样的学习方式是一种被动式的学习也叫题海战术,学生只是简单的接受数学知识,并且初中数学的知识相对比较浅显,学生很快就能掌握知识。可是到了高中以后通过题海战术是能提高一些对数学知识的掌握,可是对于这个知识中的为什么就不能说出其所以然,就不能对相关的知识进行创新。所以高中数学的学习不只是单纯的做题就可以掌握其知识,而是要弄得其所以然才行,这样就需要学生自己去主动发掘知识的内涵,在老师的指导下把数学知识进行扩展,达到触类旁通。要做到这样就需要学生本身更加主动的学习,这样才能更加的发现数学中的乐趣。 二、学会听课,尽可能掌握更多的知识。 数学的学习是需要老师的引导,在引导下,学生根据自己的情况做一些相应的练习来掌握知识,巩固知识,要想提高学习效率,就需要学生做到以下一些: 1、做好预习,提出问题,进行多次阅读课本,查阅相关资料,回答自己提出的问题,力争在老师讲新课前尽可能的掌握更多的知识,如果不能回答的问题可以在老师讲课中去解决。 2、学会听课,在初中的教学中老师经常会把一个知识点进行多次的讲解和通过大量的练习让学生去掌握,可是到高中以后,老师对于一个知识点就不会再通过大量的练习来让学生去掌握,而是通过一些相关知识的讲解去引导学生明白这个知识是怎么来的,又如何用这个知识解答一些相关的疑惑,如果学生能明白的话就能在自己的知识下通过课后的练习去巩固这些知识,同时学生也可以根据老师的引导去扩展知识。 当然,对于自己在听课过程中一下子不能明白的知识,可以通过举手让老师再进行一次分析讲解,也同时做好相关的记录,以备在课后去进一步弄明白;对于自己在预习中提出的问题,如果老师没有解决的话,可以利用课余时间请教老师解答,这样学习就可能学习到更多的知识。 3、敢于发表自己的想法,在高中数学学习中,学生会遇到很多解题技巧,可能这种方法你知道,另外的人不是很熟悉。那么就需要学生敢于发表自己的想法,这样就能让大家掌握更多的技巧。也同样能激发同学学习的兴趣,如果一节课都是老师讲的话,课堂气氛也是很闷的,学生学习的效率也是很低的。 4、听好每一分钟,尤其是老师讲课的开头和结束。 老师讲课开头,一般是概括前节课的要点指出本节课要讲的内容,是把旧知识和新知识联系起来的环节,结尾常常是对一节课所讲知识的归纳总结,具有高度的概括性,是在理解的基础上掌握本节知识方法的纲要。 三、课后巩固。 很多学生在学习过程中没有重视课后的巩固,只是觉得在课堂上掌握一些知识就够了,其实这是错误的。高中数学的知识很多,并且不像初中数学那么浅显,而是有很多的内涵,如果不能进一步挖掘其内涵,那么只是掌握这个知识的表面,于是在自己做练习时就不知道如何去解了,也不能运用这个知识的。 做练习是需要的,可是有些学生只是为了练习去做练习,而不是为了巩固这个知识,扩展这个知识去做练习,经常是做完这个练习后算做完了,这样跟初中的做题是没有区别的。其实,我们还应该把这个练习中使用到的知识串起来,这样我们就能明白那些知识在运用,也能掌握更多的知识。也同样能发现那个知识点是重点,也能发现难题是如何把相关知识串起来的。 四、学会看题、学会选做题。 高中的相关资料比初中更多,高考是全社会都关注的问题,所以高中的练习也特别多,有些学生买的资料也多,于是如何利用题目来掌握我们学习的知识,扩展我们学习的知识就成为学习的关键。我觉得题目要多看,多想,看资料中的解题方法,想方法中的为什么,这样就可以借鉴更多的方法。方法多了,可以也要消化。于是我们要会有选择的做题,达到事半功倍。我建议每天一小练,每周做一套完整的考题,看2~3套考题,从中去发现那些是这段时间数学学习的重点知识,那些是我们常用的解题方法以及使用什么方法能优化解题。 五、重视每一次测试,认真分析考试中丢分的原因,并对丢分的地方做出相关的措施。 数学的学习技巧有很多,每一个人都有自己的不同技巧,我自己根据自己读书时期的一些体会和现在教学过程中的体会,归纳出几点技巧与大家共勉。 一记内容提纲。 老师讲课大多有提纲,并且讲课时老师会将一堂课的线索脉络、重点难点等,简明清晰地呈现在黑板上。同时,教师会使之富有条理性和直观性。记下这些内容提纲,便于课后复习回顾,整体把握知识框架,对所学知识做到胸有成竹、清晰完整。 二记疑难问题。 将课堂上未听懂的问题及时记下来,便于课后请教同学或老师,把问题弄懂弄通。教师在组织课堂教学时,受到时空的限制,不可能做到顾及每一位同学。相应的,一些问题对部分学生来说,是属于疑难问题,由于课堂上来不及思考成熟,记下疑难问题,可在课后继续加以思考和探究,加以理解和掌握,不致出现知识的断层、方法的缺陷。 三记思路方法。 对老师在课堂上介绍的解题方法和分析思路也应及时记下,课后加以消化,若有疑惑,先作独立分析,因为有可能是自己理解错误造成的,也有可能是老师讲课疏忽造成的,记下来后,便于课后及时与老师商榷和探讨。勤记老师讲的解题技巧、思路及方法,这对于启迪思维,开阔视野,开发智力,培养能力,并对提高解题水平大有益处。在这基础上,若能主动钻研,另辟蹊径,则更难能可贵。 四记归纳总结。 注意记下老师的课后总结,这对于浓缩一堂课的内容,找出重点及各部分之间的联系,掌握基本概念、公式、定理,寻找规律,融会贯通课堂内容都很有作用。同时,很多有经验的老师在课后小结时,一方面是承上归纳所学内容,另一方面又是启下布置预习任务或点明后面所要学的内容,做好笔记可以把握学习的主动权,提前作准备,做到目标任务明确。 五记体会感受。 数学学习是智、情、意、行的综合。数学学习过程伴随着积极的情感体验、意志体验过程,记下自己学习过程的感受,可以用来更好地调控自己的学习行为。譬如,一道运算很繁杂的习题,依靠坚强的意志获得解题成功后,可在旁边写上“功夫不负有心人”等自勉的语句,用来激励自己。 六记错误反思。 学习过程中不可避免地会犯这样或那样的错误,“聪明人不犯或少犯相同的错误”,记下自己所犯的错误,并用红笔醒目地加以标注,以警示自己,同时也应注明错误成因,正确思路及方法,在反思中成熟,在反思中提高。 将本文的word文档下载到电脑,方便收藏和打印。 高一数学教案集合的概念篇八掌握三角函数模型应用基本步骤: (1)根据图象建立解析式; (2)根据解析式作出图象; (3)将实际问题抽象为与三角函数有关的简单函数模型·。 ·利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型·。 一、练习讲解:《习案》作业十三的第3、4题。 (精确到0·001)·。 米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域? 本题的解答中,给出货船的`进、出港时间,一方面要注意利用周期性以及问题的条件,另一方面还要注意考虑实际意义。关于课本第64页的“思考”问题,实际上,在货船的安全水深正好与港口水深相等时停止卸货将船驶向较深的水域是不行的,因为这样不能保证船有足够的时间发动螺旋桨。 练习:教材p65面3题。 三、小结:1、三角函数模型应用基本步骤: (1)根据图象建立解析式; (2)根据解析式作出图象; (3)将实际问题抽象为与三角函数有关的简单函数模型·。 2、利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型·。 四、作业《习案》作业十四及十五。 高一数学教案集合的概念篇九(2)理解逻辑联结词“或”“且”“非”的含义;。 (3)能用逻辑联结词和简单命题构成不同形式的复合命题;。 (4)能识别复合命题中所用的逻辑联结词及其联结的简单命题;。 (5)会用真值表判断相应的复合命题的真假;。 (6)在知识学习的基础上,培养学生简单推理的技能. 二、教学重点难点: 重点是判断复合命题真假的方法;难点是对“或”的含义的理解. 三、教学过程。 1.新课导入。 在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的教学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识. 初一平面几何中曾学过命题,请同学们举一个命题的例子.(板书:命题.)。 (从初中接触过的“命题”入手,提出问题,进而学习逻辑的有关知识.)。 学生举例:平行四边形的对角线互相平.……(1)。 两直线平行,同位角相等.…………(2)。 教师提问:“……相等的角是对顶角”是不是命题?……(3)。 (同学议论结果,答案是肯定的.)。 教师提问:什么是命题? (学生进行回忆、思考.)。 概念总结:对一件事情作出了判断的语句叫做命题. (教师肯定了同学的回答,并作板书.)。 由于判断有正确与错误之分,所以命题有真假之分,命题(1)、(2)是真命题,而(3)是假命题. (教师利用投__,和学生讨论以下问题.)。 例1判断以下各语句是不是命题,若是,判断其真假: 命题一定要对一件事情作出判断,(3)、(4)没有对一件事情作出判断,所以它们不是命题. 初中所学的命题概念涉及逻辑知识,我们今天开始要在初中学习的基础上,介绍简易逻辑的知识. 2.讲授新课。 (片刻后请同学举手回答,一共讲了四个问题.师生一道归纳如下.)。 (1)什么叫做命题? 可以判断真假的语句叫做命题. 判断一个语句是不是命题,关键看这语句有没有对一件事情作出了判断,疑问句、祈使句都不是命题.有些语句中含有变量,如中含有变量,在不给定变量的值之前,我们无法确定这语句的真假(这种含有变量的语句叫做“开语句”). (2)介绍逻辑联结词“或”、“且”、“非”. “或”、“且”、“非”这些词叫做逻辑联结词.逻辑联结词除这三种形式外,还有“若…则…”和“当且仅当”两种形式. 对“或”的理解,可联想到集合中“并集”的概念.中的“或”,它是指“”、“”中至少一个是成立的,即且;也可以且;也可以且.这与生活中“或”的含义不同,例如“你去或我去”,理解上是排斥你我都去这种可能. 对“且”的理解,可联想到集合中“交集”的概念.中的“且”,是指“”、“这两个条件都要满足的意思. 对“非”的理解,可联想到集合中的“补集”概念,若命题对应于集合,则命题非就对应着集合在全集中的补集. 命题可分为简单命题和复合命题. 不含逻辑联结词的命题叫做简单命题.简单命题是不含其他命题作为其组成部分(在结构上不能再分解成其他命题)的命题. 由简单命题和逻辑联结词构成的命题叫做复合命题,如“6是自然数且是偶数”就是由简单命题“6是自然数”和“6是偶数”由逻辑联结词“且”构成的复合命题. (4)命题的表示:用,,,,……来表示. (教师根据学生回答的情况作补充和强调,特别是对复合命题的概念作出分析和展开.)。 我们接触的复合命题一般有“或”、“且”、“非”、“若则”等形式. 给出一个含有“或”、“且”、“非”的复合命题,应能说出构成它的简单命题和弄清它所用的逻辑联结词;应能根据所给出的两个简单命题,写出含有逻辑联结词“或”、“且”、“非”的复合命题. 对于给出“若则”形式的复合命题,应能找到条件和结论. 在判断一个命题是简单命题还是复合命题时,不能只从字面上来看有没有“或”、“且”、“非”.例如命题“等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合”,此命题字面上无“且”;命题“5的倍数的末位数字不是0就是5”的字面上无“或”,但它们都是复合命题. 3.巩固新课。 例2判断下列命题,哪些是简单命题,哪些是复合命题.如果是复合命题,指出它的构成形式以及构成它的简单命题. (1);。 (2)0.5非整数;。 (3)内错角相等,两直线平行;。 (4)菱形的对角线互相垂直且平分;。 (5)平行线不相交;。 (6)若,则. (让学生有充分的时间进行辨析.教材中对“若…则…”不作要求,教师可以根据学生的情况作些补充.)。 例3写出下表中各给定语的否定语(用课件打出来). 若给定语为。 等于。 大于。 是 都是。 至多有一个。 至少有一个。 至多有#formatimgid_0#个。 其否定语分别为。 分析:“等于”的否定语是“不等于”;。 “大于”的否定语是“小于或者等于”;。 “是”的否定语是“不是”;。 “都是”的否定语是“不都是”;。 “至多有一个”的否定语是“至少有两个”;。 “至少有一个”的否定语是“一个都没有”;。 “至多有个”的否定语是“至少有个”. (如果时间宽裕,可让学生讨论后得出结论.)。 置疑:“或”、“且”的否定是什么?(视学生的情况、课堂时间作适当的辨析与展开.)。 4.课堂练习:第26页练习1,2. 5.课外作业:第29页习题1.61,2. 高一数学教案集合的概念篇十1. 阅读课本 练习止. 2. 回答问题 (1)课本内容分成几个层次?每个层次的中心内容是什么? (2)层次间的联系是什么? (3)对数函数的定义是什么? (4)对数函数与指数函数有什么关系? 3. 完成 练习 4. 小结. 二、方法指导 1. 在学习对数函数时,同学们应从熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质. 一、提问题 1. 对数函数的自变量和函数分别在指数函数中是什么? 2.两个函数如果互为反函数,则他们的值域,定义域有什么关系? 3.是否所有的函数都有反函数?试举例说明. 二、变题目 1. 试求下列函数的反函数: (1) ; (2) ; (3) ; (4) . 2. 求下列函数的定义域: (1) ; (2) ; (3) . 3. 已知 则 = ; 的定义域为 . 1.对数函数的‘有关概念 (1)把函数 叫做对数函数, 叫做对数函数的底数; (2)以10为底数的对数函数 为常用对数函数; (3)以无理数 为底数的对数函数 为自然对数函数. 2. 反函数的概念 在指数函数 中, 是自变量, 是 的函数,其定义域是 ,值域是 ;在对数函数 中, 是自变量, 是 的函数,其定义域是 ,值域是 ,像这样的两个函数叫做互为反函数. 3. 与对数函数有关的定义域的求法: 4. 举例说明如何求反函数. 一、课外作业: 习题3-5 a组 1,2,3, b组1, 二、课外思考: 1. 求定义域: . 2. 求使函数 的函数值恒为负值的 的取值范围. 高一数学教案集合的概念篇十一教学目标。 3.让学生深刻理解向量在处理平面几何问题中的优越性. 教学重难点。 教学重点:用向量方法解决实际问题的基本方法:向量法解决几何问题的“三步曲”. 教学难点:如何将几何等实际问题化归为向量问题. 教学过程。 由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几何图形的许多性质,如平移、全等、相似、长度、夹角等都可以由向量的线性运算及数量积表示出来,因此,可用向量方法解决平面几何中的一些问题,下面我们通过几个具体实例,说明向量方法在平面几何中的运用。 思考: 运用向量方法解决平面几何问题可以分哪几个步骤? 运用向量方法解决平面几何问题可以分哪几个步骤? “三步曲”: (2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;。 (3)把运算结果“翻译”成几何关系. 高一数学教案集合的概念篇十二教学目的: (1)使学生初步理解集合的概念,知道常用数集的概念及记法。 (2)使学生初步了解“属于”关系的意义。 (3)使学生初步了解有限集、无限集、空集的意义。 教学重点:集合的基本概念及表示方法。 教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示。 一些简单的集合。 授课类型:新授课。 课时安排:1课时。 教具:多媒体、实物投影仪。 内容分析: 高一数学教案集合的概念篇十三教学目标。 理解以两角差的余弦公式为基础,推导两角和、差正弦和正切公式的方法,体会三角恒等变换特点的过程,理解推导过程,掌握其应用. 教学重难点。 1.教学重点:两角和、差正弦和正切公式的推导过程及运用;。 2.教学难点:两角和与差正弦、余弦和正切公式的灵活运用. 教学过程。 高一数学教案集合的概念篇十四(5)树立映射观点,正确理解三角函数是以实数为自变量的函数。 初中学过:锐角三角函数就是以锐角为自变量,以比值为函数值的函数。引导学生把这个定义推广到任意角,通过单位圆和角的终边,探讨任意角的三角函数值的求法,最终得到任意角三角函数的定义。根据角终边所在位置不同,分别探讨各三角函数的定义域以及这三种函数的值在各象限的符号。最后主要是借助有向线段进一步认识三角函数。讲解例题,总结方法,巩固练习。 任意角的三角函数可以有不同的定义方法,而且各种定义都有自己的特点。过去习惯于用角的终边上点的坐标的“比值”来定义,这种定义方法能够表现出从锐角三角函数到任意角的三角函数的推广,有利于引导学生从自己已有认知基础出发学习三角函数,但它对准确把握三角函数的本质有一定的不利影响,“从角的集合到比值的集合”的对应关系与学生熟悉的一般函数概念中的“数集到数集”的对应关系有冲突,而且“比值”需要通过运算才能得到,这与函数值是一个确定的实数也有不同,这些都会影响学生对三角函数概念的理解。 本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数。这个定义清楚地表明了正弦、余弦函数中从自变量到函数值之间的对应关系,也表明了这两个函数之间的.关系。 教学重难点。 重点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);终边相同的角的同一三角函数值相等(公式一)。 难点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);三角函数线的正确理解。 高一数学教案集合的概念篇十五(1)掌握斜二测画法画水平设置的平面图形的直观图。 (2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。 2.过程与方法。 学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。 3.情感态度与价值观。 (1)提高空间想象力与直观感受。 (2)体会对比在学习中的作用。 (3)感受几何作图在生产活动中的应用。 重点、难点:用斜二测画法画空间几何值的直观图。 1.学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程。 2.教学用具:三角板、圆规。 (一)创设情景,揭示课题。 1.我们都学过画画,这节课我们画一物体:圆柱。 把实物圆柱放在讲台上让学生画。 2.学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容。 (二)研探新知。 1.例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评。 画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。强调斜二测画法的步骤。 练习反馈。 根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查。 2.例2,用斜二测画法画水平放置的圆的直观图。 教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点。 教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法。 3.探求空间几何体的直观图的画法。 (1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体abcd-a’b’c’d’的直观图。 教师引导学生完成,要注意对每一步骤提出严格要求,让学生按部就班地画好每一步,不能敷衍了事。 (2)投影出示几何体的三视图。 请说出三视图表示的几何体?并用斜二测画法画出它的直观图。教师组织学生思考,讨论和交流完成,教师巡视帮不懂的同学解疑,引导学生正确把握图形尺寸大小之间的关系。 4.平行投影与中心投影。 投影出示课本p23图,让学生观察比较概括在平行投影下画空间图形与在中心投影下画空间图形的各自特点。 5.巩固练习,课本p25练习1,2,3。 三、归纳整理。 学生回顾斜二测画法的关键与步骤。 四、作业。 1.书画作业,课本p25习题1—3a组和b组。 高一数学教案集合的概念篇十六(3)会用“数形结合”的数学思想解决问题、 用坐标法解决几何问题的步骤: 第二步:通过代数运算,解决代数问题; 第三步:将代数运算结果“翻译”成几何结论、 重点与难点:直线与圆的方程的应用、 问 题设计意图师生活动 生:回顾,说出自己的看法、 2、解决直线与圆的位置关系,你将采用什么方法? 生:回顾、思考、讨论、交流,得到解决问题的方法、 问 题设计意图师生活动 3、阅读并思考教科书上的例4,你将选择什么方 法解决例4的‘问题 生:自 学例4,并完成练习题1、2、 生:建立适当的直角坐标系, 探求解决问题的方法、 8、小结: (1)利用“坐标法”解决问对知识进行归纳概括,体会利 师:指导 学生完成练习题、 生:阅读教科书的例3,并完成第 问 题设计意图师生活动 题的需要准备什么工作? (2)如何建立直角坐标系,才能易于解决平面几何问题? (3)你认为学好“坐标法”解决问题的关键是什么? |