当前位置

: 时空阅读网实用范文数据挖掘论文(汇总8篇)

数据挖掘论文(汇总8篇)

匿名 2025-03-01 22:58:59 7 下载本文

每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。大家想知道怎么样才能写一篇比较优质的范文吗?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。

数据挖掘论文篇一

摘要:在本科高年级学生中开设符合学术研究和工业应用热点的进阶课程是十分必要的。以数据挖掘课程为例,本科高年级学生了解并掌握数据挖掘的相关技术,对于其今后的工作、学习不无裨益。着重阐述数据挖掘等进阶课程在本科高年级学生中的教学方法,基于本科高年级学生的实际情况,以及进阶课程的知识体系特点,提出有针对性的教学方法参考,从而提高进阶课程的教学效果。

关键词:数据挖掘;进阶课程;教学方法研究;本科高年级。

学生在本科高年级学生中开设数据挖掘等进阶课程是十分必要的,以大数据、数据挖掘为例,其相关技术不仅是当前学术界的研究热点,也是各家企事业单位招聘中重要岗位的要求之一。对于即将攻读硕士或博士学位的学生,对于即将走上工作岗位的学生,了解并掌握一些大数据相关技术,尤其是数据挖掘技术,都是不无裨益的。在目前本科教学中,对于数据挖掘等课程的教学,由于前序课程的要求,往往是放在本科四年级进行。如何激发本科四年级学生在考研,找工作等繁杂事务中的学习兴趣,从而更好地掌握数据挖掘的相关技术是本课程面临的主要挑战,也是所有本科进阶课程所面临的难题之一。

1数据挖掘等进阶课程所面临的问题。

1.1进阶课程知识体系的综合性。

进阶课程由于其理论与技术的先进性,往往是学术研究的前沿,工业应用的热点,是综合多方面知识的课程。以数据挖掘课程为例,其中包括数据库、机器学习、模式识别、统计、可视化、高性能技术,算法等多方面的知识内容。虽然学生在前期的本科学习中已经掌握了部分相关内容,如数据库、统计、算法等,但对于其他内容如机器学习、人工智能、模式识别、可视化等,有的是与数据挖掘课程同时开设的进阶课程,有的已经是研究生的教学内容。对于进阶课程繁杂的知识体系,应该如何把握广度和深度的关系尤为重要。

1.2进阶课程的教学的目的要求。

进阶课程的知识体系的综合性体现在知识点过多、技术特征复杂。从教学效益的角度出发,进阶课程的教学目的是在有限的课时内最大化学生的知识收获。从教学结果的可测度出发,进阶课程的教学需要能够有效验证学生掌握重点知识的.学习成果。1.3本科高年级学生的实际情况本科高年级学生需要处理考研复习,找工作等繁杂事务,往往对于剩余本科阶段的学习不重视,存在得过且过的心态。进阶课程往往是专业选修课程,部分学分已经修满的学生往往放弃这部分课程的学习,一来没有时间,二来怕拖累学分。

2数据挖掘等进阶课程的具体教学方法。

进阶课程的教学理念是在有限的课时内,尽可能地提高课程的广度,增加介绍性内容,在授课中着重讲解1~2个关键技术,如在数据挖掘课程中,着重讲解分类中的决策树算法,聚类中的k-means算法等复杂度一般,应用广泛的重要知识点,并利用实践来检验学习成果。

2.1进阶课程的课堂教学。

数据挖掘等进阶课程所涉及的知识点众多,在课堂上则采用演示和讲授相结合的方法,对大部分知识点做广度介绍,而对需要重点掌握知识点具体讲授,结合实践案例及板书。在介绍工业实践案例的过程中,对于具体数据挖掘任务的来龙去脉解释清楚,尤其是对于问题的归纳,数据的处理,算法的选择等步骤,并在不同的知识点的教学中重复介绍和总结数据挖掘的一般性流程,可以加深学生对于数据挖掘的深入理解。对于一些需要记忆的知识点,在课堂上采用随机问答的方式,必要的时候可以在每堂课的开始重复提问,提高学习的效果。

2.2进阶课程的课后教学。

对于由于时间限制无法在课上深入讨论的知识点,只能依靠学生在课后自学掌握。本科高年级学生的课后自学的动力不像低年级学生那么充足,可以布置需要动手实践并涵盖相关知识点的课后实践,但尽量降低作业的工程量。鼓励学生利用开源软件和框架,基于提供的数据集,实际解决一些简单的数据挖掘任务,让学生掌握相关算法技术的使用,并对算法有一定的了解。利用学院与大数据相关企业建立的合作关系,在课后通过参观,了解大数据技术在当前企业实践中是如何应用的,激发学生的学习兴趣。

2.3进阶课程的教学效果考察进阶课程的考察不宜采取考试的形式,可以采用大作业的形式。从具体的数据挖掘实践中检验教学的成果,力求是学生在上完本课程后可以解决一些简单的数据挖掘任务,将较复杂的数据挖掘技术的学习留给学生自己。

3结语。

数据挖掘是来源于实践的科学,学习完本课程的学生需要真正理解,掌握相关的数据挖掘技术,并能够在实际数据挖掘任务中应用相关算法解决问题。这也对教师的教学水平提出了挑战,并直接与教师的科研水平相关。在具体的教学过程中,发现往往是在讲授实际科研中遇到的问题时,学生的兴趣较大,对于书本上的例子则反映一般。进阶课程在注重教学方法的基础上,对于教师的科研水平提出了新的要求,这也是对于教师科研的反哺,使教学过程变成了教学相长的过程。

参考文献:

[1]孙宇,梁俊斌,钟淑瑛.面向工程的《数据挖掘》课程教学方法探讨[j].现代计算机,2025(13).

[2]蒋盛益,李霞,郑琪.研究性学习和研究性教学的实证研究———以数据挖掘课程为例[j].计算机教育,2025(24).

[3]张晓芳,王芬,黄晓.国内外大数据课程体系与专业建设调查研究[c].2ndinternationalconferenceoneducation,managementandsocialscience(icemss2025),2025.

[4]郝洁.《无线传感器网络》课程特点、挑战和解决方案[j].现代计算机,2025(35).

[5]王永红.计算机类专业剖析中课程分析探讨[j].现代计算机,2025(04).

数据挖掘论文篇二

根据20xx年4月国家教育部等五部关于印发《职业学校学生实习管理规定》的通知(教职成[20xx]3号)精神,针对旅游管理专业顶岗实习企业的实际情况以及顶岗实习现状,多角度分析新《职业学校学生顶岗实习管理规定》(以下简称新《规定》)对旅游管理专业顶岗实习的新要求,探索可操作的改进办法,为旅游管理专业实施顶岗实习教学课程提供借鉴和帮助。

(1)实习企业较多,大部分企业需求人数少,实习生分布零散,跟踪管理难度大。

(2)由学校安排实习的,大多是由学校和实习企业签订双方协议,实习生签阅《实习生管理守则》。

(3)中职学校旅游管理专业顶岗实习学生大多未满18周岁。

(4)实习评价体系不完善,对实习生的考核主观成分多,量化标准少。

(5)实习期仍以学生平安险作为学生意外伤害保险,尚未为学生购买专门的实习责任险。

2.新《规定》对顶岗实习的影响及改进方法。

(1)新《规定》再次强调对实习过程的全程指导,并明确提出,对自行安排实习的学生也要进行跟踪管理(新《规定》第七条、第八条)。而旅游管理专业实习企业特别是旅行社,企业多,规模小,需求人数少,实习生分布零散,甚至一个企业只有一个实习生,管理和指导难度大。调查资料显示,旅游专业实习企业中90%是旅行社,而实习生中只有50%在旅行社实习。这种情况实习指导教师如果要实现对每个实习生的指导管理,那么大部分时间都在外跑实习点,学校对专业教师的教学任务、科研任务及其他工作都很难完成。针对这一现状,结合新《规定》要求,可从以下方面着手改进:

1)建立校企生联动实习管理制度。在学校数字化平台增加实习管理模块,将实习操作流程、标准分单元录入模块内,实习生定期在平台上提交单元作业,企业指导教师和学校指导教师定期在平台上提交实习生单元成绩,最后的实习总成绩由单元成绩按比例汇总而成。这样既可参与和掌控实习过程,又能优化实习考核体系,增加量化标准。如数字平台无法立即实施,可先采用电子文档或纸质文档方式。

2)实习面试结束后,组织召开实习指导教师动员会,由学校安排的指导教师和各企业安排的指导教师参加,共同学习和调整实习计划、操作标准、达标考核、指导流程等。

3)实习收尾阶段,组织召开实习总结会,对实习工作进行交流分享,对实际工作中遇到的问题提出改进建议,为即将开展的新一轮实习工作做好铺垫。

(2)新《规定》第十二条、第十三条要求,顶岗实习前学校、企业、学生须签订三方协议,这对制约企业、约束学生有了明确依据。旅游企业淡旺季明显,一些企业到了淡季就将学生解聘;学生实习中无法适应而中途离职的也时有发生,所以协议内容除新《规定》列示内容外,还应增加实习生到岗后应遵守的相关管理制度、学生违反规定的处理办法等内容。

(3)新《规定》第十四条要求,未满18周岁的学生参加顶岗实习,须由监护人签阅知情同意书。大部分中职学校学生在实习时都未达到该年龄标准,因此中职学校在实习前应按户口登记年龄进行一次筛选,将“顶岗实习学生监护人知情同意书”以统一格式发放给未满18周岁学生,并告知监护人,请监护人签阅。“知情同意书”交学校后方可参加实习面试。

(4)新《规定》第三十五条要求,职业学校或实习单位应为实习学生投保实习责任保险。实习责任险是指学生在实习期间,因学校的管理疏忽对学生造成的身体、心理伤害应由学校承担责任的保险。据调查,保险公司目前尚未推出专门的实习责任险,但可先为实习生购买一年期限的意外险。但意外险与实习责任险在投保范围、价格等方面还有差异,所以,职业学校也应同时与保险行业接触,积极推进实习责任险的设计出台。

总之,旅游管理专业顶岗实习在实施过程中还存在一些问题和困难,如企业与学校的需求差异、旅游行业淡旺季与实习期的时间矛盾、实习生生活管理和心理疏导问题等,有待在《新规定》的要求和指导下,与企业深度合作,探索出一套有效的、可操作的顶岗实习实施标准。

数据挖掘论文篇三

:数据挖掘是一种特殊的数据分析过程,其不仅在功能上具有多样性,同时还具有着自动化、智能化处理以及抽象化分析判断的特点,对于计算机犯罪案件中的信息取证有着非常大的帮助。本文结合数据挖掘技术的概念与功能,对其在计算机犯罪取证中的应用进行了分析。

:数据挖掘技术;计算机;犯罪取证。

随着信息技术与互联网的不断普及,计算机犯罪案件变得越来越多,同时由于计算机犯罪的隐蔽性、复杂性特点,案件侦破工作也具有着相当的难度,而数据挖掘技术不仅能够对计算机犯罪案件中的原始数据进行分析并提取出有效信息,同时还能够实现与其他案件的对比,而这些对于计算机犯罪案件的侦破都是十分有利的。

数据挖掘技术是针对当前信息时代下海量的网络数据信息而言的,简单来说,就是从大量的、不完全的、有噪声的、模糊的随机数据中对潜在的有效知识进行自动提取,从而为判断决策提供有利的信息支持。同时,从数据挖掘所能够的得到的知识来看,主要可以分为广义型知识、分类型知识、关联性知识、预测性知识以及离型知识几种。

根据数据挖掘技术所能够提取的不同类型知识,数据挖掘技术也可以在此基础上进行功能分类,如关联分析、聚类分析、孤立点分析、时间序列分析以及分类预测等都是数据挖掘技术的重要功能之一,而其中又以关联分析与分类预测最为主要。大量的数据中存在着多个项集,各个项集之间的取值往往存在着一定的规律性,而关联分析则正是利用这一点,对各项集之间的关联关系进行挖掘,找到数据间隐藏的关联网,主要算法有fp-growth算法、apriori算法等。在计算机犯罪取证中,可以先对犯罪案件中的特征与行为进行深度的挖掘,从而明确其中所存在的联系,同时,在获得审计数据后,就可以对其中的审计信息进行整理并中存入到数据库中进行再次分析,从而达到案件树立的效果,这样,就能够清晰的判断出案件中的行为是否具有犯罪特征[1]。而分类分析则是对现有数据进行分类整理,以明确所获得数据中的相关性的一种数据挖掘功能。在分类分析的过程中,已知数据会被分为不同的数据组,并按照具体的数据属性进行明确分类,之后再通过对分组中数据属性的具体分析,最终就可以得到数据属性模型。在计算机犯罪案件中,可以将按照这种数据分类、分析的方法得到案件的数据属性模型,之后将这一数据属性模型与其他案件的数据属性模型进行对比,这样就能够判断嫌疑人是否在作案动机、发生规律以及具体特征等方面与其他案件模型相符,也就是说,一旦这一案件的数据模型属性与其他案件的数据模型属性大多相符,那么这些数据就可以被确定为犯罪证据。此外,在不同案件间的共性与差异的基础上,分类分析还可以实现对于未知数据信息或类似数据信息的有效预测,这对于计算机犯罪案件的处理也是很有帮助的。此外,数据挖掘分类预测功能的实现主要依赖决策树、支持向量机、vsm、logisitic回归、朴素贝叶斯等几种,这些算法各有优劣,在实际应用中需要根据案件的实际情况进行选择,例如支持向量机具有很高的分类正确率,因此适合用于特征为线性不可分的案件,而决策树更容易理解与解释。

对于数据挖掘技术,目前的计算机犯罪取证工作并未形成一个明确而统一的应用步骤,因此,我们可以根据数据挖掘技术的特征与具体功能,对数据挖掘技术在计算机犯罪取证中的应用提供一个较为可行的具体思路[2]。首先,当案件发生后,一般能够获取到海量的原始数据,面对这些数据,可以利用fp-growth算法、apriori算法等算法进行关联分析,找到案件相关的潜在有用信息,如犯罪嫌疑人的犯罪动机、案发时间、作案嫌疑人的基本信息等等。在获取这些基本信息后,虽然能够对案件的基本特征有一定的了解,但犯罪嫌疑人却难以通过这些简单的信息进行确定,因此还需利用决策树、支持向量机等算法进行分类预测分析,通过对原始信息的准确分类,可以得到案件的犯罪行为模式(数据属性模型),而通过与其他案件犯罪行为模式的对比,就能够对犯罪嫌疑人的具体特征进行进一步的预测,如经常活动的场所、行为习惯、分布区域等,从而缩小犯罪嫌疑人的锁定范围,为案件侦破工作带来巨大帮助。此外,在计算机犯罪案件处理完毕后,所建立的嫌疑人犯罪行为模式以及通过关联分析、分类预测分析得到的案件信息仍具有着很高的利用价值,因此不仅需要将这些信息存入到专门的数据库中,同时还要根据案件的结果对数据进行再次分析与修正,并做好犯罪行为模式的分类与标记工作,为之后的案件侦破工作提供更加丰富、详细的数据参考。

总而言之,数据挖掘技术自计算机犯罪取证中的应用是借助以各种算法为基础的关联、分类预测功能来实现的,而随着技术的不断提升以及数据库中的犯罪行为模式会不断得到完善,在未来数据挖掘技术所能够起到的作用也必将越来越大。

作者:周永杰单位:河南警察学院信息安全系。

数据挖掘论文篇四

方剂中药物的研究。

2数据挖掘术在神经根型颈椎病治方研究中的优势。

规律时,选取了100张治方,因该病病因病机复杂,证候不一,骨伤名师张玉柱先生对该病的治则治法、药物使用是不同的。因此他们利用excel建立方证数据库,采用sppsclementine12.0软件对这些数据的用药频次、药物关联规则及药物聚类进行分析,最后总结出张氏骨伤治疗腰椎间盘突出症遵循病从肝治、病从血治、标本兼治的原则,也归纳出治疗三种不同证型的腰突症的三类自拟方。由此看出数据挖掘技术在方剂研究中的应用对数据背后信息、规律等的挖掘及名家经验的推广具有重大好处,因此数据挖掘技术在神经根型颈椎病的治方研究中也同样发挥着巨大的作用。

3数据挖掘技术在神经根型颈椎治方中的应用进展。

经典中治疗神经根型颈椎病的治则、治法及用药规律是吻合的,是临床用药的积累和升华,可有效地指导临床并提高疗效;另一方面也为中药新药的创制带给处方来源,指导新药研发[13]。

4小结。

数据挖掘技术作为一种新型的研究技术,在神经根型颈椎病的治方研究中的运用相对于其他领域是偏少的,并且基本上是研究文献资料上出现的治方,在对名老中医个人治疗经验及用药规律的总结是缺乏的,因此研究范围广而缺乏针对性,同时使用该技术的相关软件种类往往是单一的。此刻研究者在研究中医方剂时往往采用传统的研究方法,这就导致在大数据的研究中耗时、耗力甚则无能为力,同样也难以精准地提取大数据背后的隐藏的潜在关系和规则及缺乏对未知状况的预测。产生这样的现状,一方面是很多研究者尚未清楚该技术在方剂研究中的优势所在,思维模式尚未更新;另一方面是很多研究者尚未清楚该技术的操作技能及软件种类及其应用范围。故以后应向更多研究者普及该技术的软件种类、其中的优势及操作技能,让该技术在临床中使用更广,产生更大的效益。

参考文献。

[2]曹毅,季聪华.临床科研设计与分析[m].杭州:浙江科学技术出版社,:189.

[4]陈丈伟.数据仓库与数据挖掘[m].北京:清华大学出版社,:5.

[5]杨玉珠.数据挖掘技术综述与应用[j].河南科技,,10(19):21.

[8]李曙明,尹战海,王莹.神经根型颈椎病的影像学特点和分型[j].中国矫形外科杂志,,21(1):7-11.

数据挖掘论文篇五

近几年,中国经济建设的快速发展也带动了水利这些基础建设的发展,水利工程的增多正在逐渐改善我国的水利体系,如防洪、排水、灌溉、发电、养殖、旅游等,同时也反过来促进国民经济更加稳健发展。此外,为了能加快水利工程建设的发展,需要在水利工程管理上做出新的调整,以给水利工程注入新鲜血液,使水利工程起到更巨大的作用。因此,本文通过阐述数据挖掘技术的一些实施要点,探讨了数据挖掘技术在水利工程中的可行性和应用情况。

从另一个角度看,数据挖掘是资料收集、信息化采矿等。在水利工程项目管理过程中,数据挖掘技术的应用对水利工程项目的管理起着重要的推动作用。同时,数据挖掘是从数据库中发掘信息的过程(数据库知识发现)。数据挖掘的主要应用于大量的数据的采集整理,通过搜索算法来隐藏信息的过程。同样,在当今的信息时代,数据挖掘与计算机和先进的科学技术密切相关,通过计算机、互联网搜索、统计、分析、和其他方面的发展,可服务于许多行业和许多项目,本文借助于某市的水利工程,详细的阐述了其在现场数据管理中的应用情况。

数据挖掘是以现有的海量数据为重要资源,采用数据挖掘引擎技术,通过分析数据库中的数据,提取出最有价值的信息。

2.1相关性分析。

通过数据源之间的相关性,找到所需的目标数据和扩展的信息,通过数据之间的联系找到规律,以便更好地分析数据的使用情况。

2.2数据的分类与整合。

为了达到对更多的数据进行分类和整合的目的,对于没有规律和类型的标记数据按照相关的分类规则,以同一规则将信息汇总在一起,方便查找和应用数据,提高工作效率。

2.3坚持预测分析。

在数据源中坚持预测分析,通过对重要数据进行建模,对信息进行综合有效的分析和预测,从而得出数据的发展趋势。让数据本身通过数据挖掘技术得出必要的结论。

2.4把握概念。

通过了解数据源中所需信息的含义,总结主要特点,并给出概念描述,使数据具有高度的清晰度。

2.5把握据偏差。

数据在输入和输出时不可避免地会出现差错,通过数据挖掘技术检测数据准确性是必要的,要找出参考值与结果之间是否存在差异,寻找一些潜在的信息,以减少数据误差。

3.1部门专家观点之间存在差异。

在水利工程管理中使用了大量的数据,特别是采煤工艺在处理大空间问题上,加之水利部门普遍较大,且越来越多,需要与各部门协调配合工作。但不同的部门通常只负责沟通、交流的时间少,再加上数据分析技术落后于实践,各部门使用的仪器不一样,在数据点的分析上各专家持不同意见,这将阻碍数据处理,从而影响部门之间的合作,数据非常容易干扰,从而影响整个项目进展情况。

3.2与gis系统联系不密切。

gis在水利工程信息系统中占有很大的比重,是水利工程信息系统中不可缺少的一部分,它的主要功能是产生大量的空间数据,空间数据的.计算、查询和分析,以及空间数据可视化是非常复杂的,单纯的依靠手工和一般信息系统是无法解决的,所以我们应该充分利用gis系统。然而,在现实中,由于在这方面缺乏专业人才,充分利用原有的数据和gis系统以进行有效结合,两者一起处理复杂的空间数据,现在还有很多事情要解决。

3.3数据挖掘模型建立不够完善。

我国的水利工程虽然已经开展多年,但水利工程信息系统的应用还处于起步阶段。如今,数据挖掘技术模型可以帮助水利工程数据挖掘的人员可以预见在工程设计和施工过程中存在的差距等问题,确保水利工程项目按照原先设定好的方向进展。

4实例分析。

4.1概况。

某水电站于1963开始建设,于1975年完工,其位于黄河中游的陕西境内,装机容量122万5000kw,是新中国成立以来为数不多的达到百万千瓦的大型水利水电项目。大坝主体结构为混凝土结构,大坝高度为147m,其电站总存储容量为57亿8000万m3。其水利项目主要管理内容包括水库管理、水闸管理、堤防管理、引水工程管理、水利工程管理等。

数据模型主要功能包括水利工程防洪、除涝、灌溉、运输、发电、水产养殖等,电站周边区域的社会经济和农业发展受其影响尤为巨大。在过去的发展过程中,某市的水利工程在管理和决策中,这些都是比较复杂的非结构化决策。因此,构建一个探索性或查询驱动的数据挖掘模型会给水电站的工作人员和专家在数据检索和专业分析的工作上提供方便,使管理者在管理工作上更加的科学合理。

库和数据仓库olap和olam层(数据挖掘的核心内容),用户界面层。用户界面层主要功能是管理员或用户进行人际对话、挖掘数据查询、挖掘结果显示以及数据结果输出。

该水利工程项目管理的内容主要包括:管理水库,水闸管理、堤防管理、南水北调工程管理、项目管理、灌溉等方面。虽然数据挖掘有助于这个过程的开展,水给利工程的管理提供了科学依据,但如果该水利工程管理只是单单的进行数据挖掘,这是不符合数据挖掘系统理论的基本思想。因此,只有在现有的、成熟的国内水利工程项目管理成果的基础上,结合数据挖掘系统,这才是开发水电站管理种数据挖掘系统的最佳方式。

国内许多水利工程在管理和施工过程中,最常用的是gis技术软件。gis软件具有分析处理功能、空间数据查询功能。gis技术软件本身蕴含着多样的数据信息,如当地的一些社会经济、地形地貌、地质、水文环境等。所以,对于水利工程管理数据挖掘系统的未来发展,首先要考虑的应该是如何实现gis系统和数据挖掘理论系统完美衔接。

5总结。

综上所述,数据挖掘技术在水利工程管理中的应用使我们能够分析水利工程的数据更加的全面,这样我们就可以充分挖掘潜在的、有价值的信息,使项目管理更加有效率,使工程的投入资金能被合理的利用,从而提高水电工程质量和工作效率,降低项目管理成本,使水电工程发挥出最大的社会效益和经济效益。虽然在挖掘数据方面还存在很多问题,但我们希望能在今后的水电工程管理中更多的去采用这种技术,为项目管理提供更多的帮助,促进国民经济的发展。

数据挖掘论文篇六

多年以来,我们一直坚持与企业行业专家及一线工作人员进行有效的岗位对接,与哈尔滨铁道国际旅行社、太阳岛风景区、亚布力风景区等旅游企业共同合作,在专业建设委员会指导下,确定本专业面向的岗位(群),对岗位(群)典型工作过程进行分析整理,明确岗位核心能力及具体要求。共同研究制定人才培养方案、研究课程设置、商讨实习实训内容、研制教学软件、制订职业岗位考核评价标准,使教学及课程设置更贴近工作岗位的需求。与企业共同完善旅游管理学生实习制度,进一步加强学生的生产实习和社会实践,保证旅游管理专业学生有10个月以上的时间到企业等用人单位顶岗实习。

为了加强学生的职业能力和实践技能的培养,我们不断建设和完善实习实训室及基地建设,完成以旅游观光区为主体的黑龙江省商贸旅游基地建设的后续完善开发,并启动部分建设。形成黑龙江旅游资源、旅游文化教育、培训、交流窗口。依托专业实训室、校内实训基地、教学做一体化教室、导游模拟数字化实训室、校外旅游实训基地、校外旅行社和旅游景区、旅游酒店等,加强校企合作,做到产学研结合,形成了比较稳固的专业教学实习和实训基地。并根据行业营销的淡旺季安排教学内容和实训时间,以职业技能的训练为主线,结合旅游行业的淡旺季,增设实训学期。在实训课程的设计上,全面开展课内实训、实训周(学期)、顶岗实习三个层次的实训,实施现场教学、角色体验,校内情境模拟实践、案例教学、顶岗实战等教学,邀请行业专家对学生的实训进行专业指导,参与实训课程及线路的设计与开发,建立校企合一的综合性实训基地,实现产学有效对接。

利益相关方共同参与的第三方人才培养质量评价制度。确立毕业生就业率、就业质量、企业满意度、创业成效等专业人才培养质量的重要指标,加强学生就业指导和职业生涯规划,树立学生职业人意识。把企业职业岗位考核纳入课堂教学当中,学生与企业共同制定学生学习成绩考评办法、教学质量评价办法,按职业考核的标准来考核学生的学习成绩和课堂学习的情况,将职业素质的培养渗透到教学的每个环节,培养学生良好的职业习惯和职业行为,从而缩短学生的适应期,实现“三个零距离”。使学生在出校门之前就能完成从学生到职业人的身份转化,建立毕业跟踪和继续教育机制,对毕业生毕业后五年至十年的发展轨迹进行持续追踪,了解学生在用人岗位的实际需求和学校教学的不足,进一步调整人才培养方向,实现与企业工作岗位的有效对接。

通过对教育教学活动和职业发展信息化管理,分析学生(毕业生)、教师、管理人员等有关学习(培训)、教学、工作等方面的信息,及时了解教师在教学中教育教学信息和学生在学习中的学习情况,让学生在校园内就能完成企业工作岗位的工作任务和内容,企业在工作岗位就能掌握学生的学习情况,校企双向互动,实现三方资源共享,实施第三方评价,为教学质量管理、招考办法改革、专业设置优化、人才培养方案制定、课程调整创新、办学成本核算、制度设计等提供科学依据,实现教学全过程的信息共享。通过岗位技能分析,确定了岗位群和技能要求,课程开发和设计体现职业性,实践性,开放性,使之真正达到校企合作,工学结合的办学要求。以职业能力为标准,将职业资格认证标准纳入教学计划中,实现无缝对接;以旅游服务工作过程为导向,打破原来的课程体系,构建基于工作过程的学习领域课程方案,突出旅行社经营与管理、导游业务、旅游产品设计、景区服务与管理、会展实务操作、财务管理等主要核心能力的培养。

数据挖掘论文篇七

随着城市化建设步伐的加快,城市中人口的集中,产生了许多安全隐患,尤其是火灾隐患,所以消防灭火工作变成了现今城市建设中的重要工作。消防灭火救援中最重要的是对水的需求,做好城市消防灭火工作的基础是有效设置好城市给水系统的合理设置。数据挖掘就是将大量的随机化数据编程课被理解的智慧的过程,使用数据挖掘等相关知识可以对城市消防及水系统中的相关信息进行有效处理。本文通过对数据挖掘技术进行分析,从而得出其在消防灭火救援工作中的作用,从而分析消防灭火救援中数据挖掘的应用。

数据挖掘是20世纪80年代产生的一种用来分析信息数据的一种专业技术,常常用来决策或者解决商业方面的问题。数据挖掘的操作方法是对一些大量的数据进行提纯,运用一定的手段对数据进行处理,将数据中的有效信息提取出来,实现数据和信息的有效转化。数据挖掘就是将大量的随机化数据编程课被理解的智慧的过程。数据挖掘的过程主要可以分为以下几步:首先是数据的准备,将被挖掘的数据进行详细罗列,其次是数据挖掘,也就是从数据样本中提取有效信息,最后是对挖掘结果的解释。数据挖掘是一项十分综合性的技术,他是数理统计、数据库、模糊数学等相关技术的综合体,是一项多种数学学科交叉的综合性学科,数据挖掘的价值主要表现在以下几个方面:可视化、估值与预测、分类与聚类、关联分析以及异类分析几种。

数据挖掘作为综合性的统计技术,在各行业的作用不容小视,其中运用于消防灭火救援过程中也是十分有效的。而数据挖掘在消防灭火救援中被应用的优势也就是其发挥的作用主要表现在以下几点:首先是使用数据挖掘等相关知识可以对城市消防及水系统中的相关信息进行有效处理。其处理步骤为:(1)根据消防灭火救援中的供水需求进行分析,在现有的数据库中寻找相关数据,并将数据进行整合。(2)运用数据仓库分析技术对数据进行初步处理,粗略计算出积水系统的供水量。(3)采用聚类分析方法对数据进行分类,有效规划好城市消防给水系统的大框架。其次,数据挖掘技术中所涉及的数据仓库技术能够有效解决当前消防数据库中信息利用率低的缺点,能够有效整合多个数据库中的数据建立专门的数据库,并能够对数据进行分析,对现有的消防灭火救援工作提供便利。此外,我国现有的地面水源的有效利用率还不是很高,江河湖海中的‘水大部分都是火灾的时候临时抽取,难免有些处理不当,数据挖掘能够有效整理消防供水系统,将地面水源规划到消防供水的库存中,提高地面水源利用率,也有效降低管理成本。最后,数据挖掘中的聚类分析方法能够有效对城市中所发生的活在源头和隐患进行整理和排查,有效防止火灾的发生,也能够进一步优化城市消防系统,扩大消防供水系统的覆盖点,完善城市消防灭火系统,而且数据挖掘还能够对不同的建筑分步进行细化分类,对不同程度的火灾所需要的水量进行预测,从而能够实现对城市消火栓的分布情况进行科学性处理。

消防灭火救援中最重要的是对水的需求,做好城市消防灭火工作的基础是有效设置好城市给水系统的合理设置。所以消防灭火救援中数据挖掘的应用要从消防的供水需求出发,对现有的数据库进行分析和整合,确定需水状况,进一步对事实表和维度进行划分,建立新的数据仓库,为消防给水系统的运行提供决策方面的支持。步骤如下:

(一)建立数据模型。

从上文分析来看,建立新的数据库要具有以下功能:火灾风险评估功能、消防给水功能以及历史或再分析功能。而要做到这三点,就要对数据仓库进行分类,建立三层分类模型,分别是概念模型、逻辑模型和物理模型三类。概念模型的设计主要以信息包图为基础进行,首先要确定信息包图的指标、维度和类别三大方面,然后再对实体对象进行分析,从而完成信息包图;逻辑模型的基础是星型图,它的主要方面是指标实体、维度实体和详细类别实体三种,主要反映概念模型中涉及的实体间的关系;物理模型的基础是数据库表,主要是将指标的实体转化成的数据编成表,主要内容的是星型图中各种中心和边角上的数据信息,能够有效形成火灾风险防控的星星模式结构。

(二)联机网络进一步分析。

这一步是运用网络工具进行联机分析,主要的步骤为:首先定义控制流任务,运用合适的多媒体工具进行数据的提取和转换,而且还要确保数据的时效性;其次是建立对微数据,将数据仓库中的事实表和维表从而为表转换为多维化数据。

(三)聚类方法分析火灾风险。

聚类分析是数据挖掘技术中一种重要的数据处理方法,主要原理是将指标量变为数据量,主要步骤是:建立指标体系――确定指标因子的权重――量化指标――实现聚类分析。通过聚类分析可以对不同地区的火灾等级进行分类,评估不同地区的火灾隐患严重度,从而进行供水系统的有效安排,保障该区域的消防灭火工作的进行,也能够对火灾进行有效的防控。结语综上所述,数据挖掘技术是时代发展的成果,是对数据进行统计的重要技术,在各行业的应用都很广泛。本文通过分析消防灭火救援中数据挖掘的应用,对数据挖掘技术有了初步了解。虽然我国消防工作中设计了大量数据,对于数据处理的技术还很生疏使得数据的利用率比较低,本文将消防工作和数据挖掘技术联系起来,能够对消防工作中的数据处理起到一些参考作用,相信随着时间发展,数据挖掘终将运用于消防领域中,为我国未来的建设贡献一份力量。

参考文献。

[1]楼巍.面向大数据的高维数据挖掘技术研究[d].上海大学,.

[2]谢道文.基于数据挖掘的火灾分析模型及应用研究[d].中南大学,.

[4]张大可.数据挖掘技术在火灾事故分析中的应用研究[d].首都经济贸易大学,.

数据挖掘论文篇八

我国引入战略管理会计理论的时间相对西方发达国家较晚,虽然现阶段对此理论的介绍和推广已经逐步落实,但由于未将此理论与我国商业银行实际发展状况紧密融合,所以在理论普及的过程中,并没有得到全面、准确的认识,致使现阶段我国商业银行并未确定战略管理会计运行的总体原则和完善的运行机制,甚至未实现对战略管理会计实施步骤的统一规划和安排,导致现阶段我国商业银行对于战略管理会计仍是“想怎么做,怎么做”,这对商业银行战略管理会计的应用和发展产生了滞碍。

(二)传统管理会计信息系统的阻碍。

现在部分商业银行仍采用传统管理会计信息系统,此种系统虽然能够满足商业银行内部运行预测、规划、控制、考核、决策等环节的信息需要,但战略管理会计不仅将眼光定向商业银行内部,信息更应该覆盖商业银行的竞争对手及顾客,这样才能够实现为战略决策提供信息支持,通过收集、分析战略对手的相关信息,判断竞争对手存在的优势及劣势,并根据商业银行自身实际情况进行战略调整,例如收集竞争对手的产品种类、市场营销活动等,但传统管理会计系统在此方面并不能体现优势。除此之外,商业银行使用的传统管理会计系统将收集的信息按部门或系统构成分类,这导致原本不全面的信息被再次分割,信息分析、整理受限,阻碍了商业银行战略管理会计的实际应用。

(三)商业银行推行作业成本法存在实际困难。

成本作业法是一种成本核算的方法,即作业的过程中必然会消耗资源,将消耗的资源计入相应的‘作业中,并确定产生消耗的成本动因,进而实现各作业成本向成本计算对象的分配,商业银行其资源即人事、场地、设备、事务等产生的花费,而作业即商业银行所提供的所有无形业务,如贷存款、财务会计等。由此可见商业银行的作业比较复杂,对其进行成本管理不论是分析资源动因还是划分作业成本库等都存在一定困难,特别是实践中会发生诸多与理论不完全相符的情况,造成作业成本法应用存在现实困难,例如商业银行在运营过程中间接成本会发生变动,而且造成变动的因素较多,这就为作业动因的确定制造了难度,如果将所有因素都视为作业动因就会使数据收集的难度加大,造成不必要的人员物资浪费,而选取部分因素作为作业动因,可能造成产品成本信息不全,成本控制管理过于片面,所以现阶段成本作业法应用不灵活也阻碍了战略管理会计的应用。

(四)商业银行绩效评价存在问题。

商业银行在绩效标准方面,普遍以部门的角度进行员工绩效,而忽视组织层面的全局战略绩效,将平衡计分卡单纯应用于员工个人绩效方面,使其与组织的愿景、发展战略等相脱离,并未发挥预期的目的;在绩效指标方面,由于错误的将绩效以员工个人为对象,所以在确定绩效指标时只能以员工岗位职责为依托,指标往往不能显示关键问题;在评价体系方面,商业银行往往将眼光定位于银行内部的财务指标,而对外部竞争对手影响下的长远目标并未重视,所以评价体系并不全面。

(一)加强相关理论研究力度,逐步落实实践。

在理论方面首先应认识到我国战略管理会计理论研究相对落后;其次组织在会计学、管理学等与战略管理会计相关领域的权威专家成立专门的理论研究机构,实现组织理论研究,实现资源的最大化集合;再次对理论研究过程中存在的问题进行针对性的调查研究,提出解决办法,逐渐完善战略管理会计的理论体系;然后将国内外理论成果与我国具体国情和商业银行现阶段发展状况相融合,提出适合于商业银行应用的战略管理会计理论;最后将会计理论按照先试点后推行循序渐进的办法,应用于商业银行,使商业银行战略管理会计实践有充分的理论作指导。

(二)加强商业银行信息化建设力度。

信息是战略管理会计应用的基础,所以要加大其应用必须提升信息质量,实现全面、准确、及时收集、分析,考虑到传统管理会计系统的缺陷,所以建立针对竞争对手或顾客的外向型信息采集系统是现阶段信息化建设的关键,使商业银行战略决策可以有充足的外部信息做依据。另外成立专业的、权威的信息管理部门也是商业银行信息化建设的关键,这样可以有效避免信息不共享造成信息分割,阻碍商业银行战略决策;除此之外,要实现商业银行内部信息及外部信息的全面收集、科学分析,需要配备统一的计算机设备、统一信息机业务编码、实行统一的规章制度进行管理,并有统一的监督做支撑,由此可见,信息化建设不仅包括信息化系统建设,还包括信息化人才队伍的建设。

(三)根据实际情况应用作业成本法。

成本对象消耗作业,作业消耗资源是作业成本法不变的法则,可以看出通过作业成本法可以有效的提升成本准确度,但对于精确成本信息却并没有强制性的要求,所以在应用作业成本法时要注意成本对象的划分满足成本管理需要即可,并不是划分的越精准越好;在选取成本动因时要考虑其与间接成本相关性,通常相关性与计算准确性成正比,而且要从重要成本动机入手,这样可有效减少工作量,提升准确性;在进行成本分配时,主要考虑不能够直接对应成本对象的资源,这样会避免成本消耗被重复分配。

(四)加强平衡计分卡的实用性。

现阶段商业银行对平衡计分卡的应用普遍存在片面性的问题,为了扭转局面可以应用战略地图,通过战略地图将战略全方位的表述出来,使员工能够清晰的掌握商业银行的战略管理会计,由此可见战略地图是平衡计分卡的补充说明,是商业银行与员工的沟通媒介,从而使员工对个人的绩效有更加全面的认识。在确定绩效指标的过程中,可以监理部门的数据库,既存储部门历史运行数据,又存储竞争对手的相关指标,使指标确定更加具有针对性,而且与现实更贴近,这样不仅可以调动部门完成绩效的积极性,为商业银行创收,而且逐渐完善商业银行的评价体系,有利于其长期发展。

商业银行内部文化是商业银行长期运营过程中积累的精神财富,其对员工的思想行为具有很强的规范和引导作用,如果商业银行战略管理会计能够与其内部文化实现融合,就会为战略管理会计提供强大的动力,使员工自发的为战略管理会计的实现而做出努力,这样不仅能调动员工积极探索战略管理会计,而且可以实现商业银行各层员工的力量集中化,这为战略管理会计的应用创造了条件。

三、结论。

通过上述分析可以发现,现阶段国际金融环境的变化、国内金融体制的调整,都决定商业银行选择战略管理会计信息的必然性,只有这样才能在竞争激烈的银行金融环境中占有优势,才能满足战略决策的需要,达到战略管理的要求,但现阶段商业银行在实践战略管理会计的过程中仍然存在一些问题,需要有针对性的调整才能够得到完善,由此可见,商业银行应用战略管理会计并不是一蹴而就的,需要不断进行调整、完善,所以应以长远的眼光对待战略管理会计。

猜你喜欢